LAPSE: Automatic, Formal Fault-Tolerant
Correctness Proofs for Native Code

Anonymous

Abstract—LAPSE is a new framework for developing fault-
tolerant correctness proofs for near-arbitrary native code. It
lifts binary code into an intermediate representation (IR) whose
operational semantics admit hardware faults in the form of
instruction-skips. LAPSE implements a machine-verified symbolic
execution engine for the resulting IR within the Rocq automated
theorem proving framework, creating a proof environment in
which the space of possible executions includes all potential
fault possibilities. To cope with the increase in proof space,
automation tools succinctly describe and reason about the desired
fault model. An implementation for 32-bit RISC-V semantics and
evaluation on security-critical cryptographic subroutines from
OpenSSL and BearSSL demonstrates that fault-aware proofs
can be constructed from standard correctness proofs with little
additional work, often requiring no novel proof techniques. The
results show that developing fault-tolerant correctness proofs is
not only feasible, but rote for certain kinds of fault-tolerant
programs.

I. INTRODUCTION

Machine-checked correctness proofs are widely champi-
oned as offering exceptionally strong guarantees of safety
and security for mission-critical code. For example, formal
verification is increasingly utilized in critical systems (e.g.,
[1], [2]), including open-source libraries and utilities (e.g.,
[31, [4]), because it yields explicit, complete-coverage proofs
of critical code properties that are independently checkable
down to the foundations of mathematics. This results in a
trusted computing base that can be significantly smaller and
more robust than both formal and informal alternatives, such
as software model checking or unit testing (cf. [5], [6]).

Like all software verification approaches, formal methods
are contingent upon assumptions about the computational
environment in which the analyzed code will run. These
include the semantics of the instruction set architecture (ISA)
on which the code is expected to run, such as assuming a
single-threaded environment and trustworthy interrupts and
context switches (e.g., [7]). Proofs that assume a given ISA
semantics offer no assurances about the outcome of running
the code on a different ISA, or in an environment where some
of the ISA assumptions are unreliable or violated.

Unrealistic assumptions about hardware behavior can there-
fore engender a false sense of safety, as these assumptions

Network and Distributed System Security (NDSS) Symposium 2026
23 - 27 February 2026 , San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.[23|24]xxxx
www.ndss-symposium.org

can be invalidated either by a malicious adversary or the
physical environment (e.g., extreme heat, cold, or radiation).
To exploit this, attackers perform fault injection attacks, such
as tampering with a processor’s power supply or subjecting
it to extreme electromagnetic radiation, to cause adverse
computational effects. Typical effects include memory corrup-
tion, register corruption, modifying instructions in the decoder
pipeline, and skipping instructions. Any one of these faults is
likely to invalidate the assumptions of the ISA model on which
formal proofs rely, rendering the proved result inapplicable.

Realistic fault-aware assumptions are unfortunately difficult
or impossible to express in most modern software verification
frameworks due to their reliance on source-level code seman-
tics. In particular, most formal methods (a) assume a trusted
compiler that preserves the semantics of the source code
in the generated machine code (semantic transparency), or
(b) machine-verify that a particular compiler implementation
achieves semantic transparency for a faultless ISA (e.g., [3],
[8]). Such approaches cannot formulate proofs that reason
about faults expressible only at the binary level, including
faults in machine instructions, registers, instruction-decoding,
and memory, which are abstracted away by most high-level
programming languages. Reasoning about program behavior
in a fault-capable environment thus requires reasoning directly
about the program’s machine code, in which binary compo-
nents are a part of the computational model.

Informal alternatives include design patterns for construct-
ing fault-tolerant software (e.g., [9], [10]) and fault injection
testing [11]. These sacrifice assurance for scalability to achieve
a best-effort defense against fault injection attacks in practice.
Unfortunately, design patterns can be implemented incorrectly
or be undermined by unforeseen compiler behaviors [12].
Fault injection testing involves injecting faults into running
software to empirically assess its fault tolerance, which scal-
ably supports many fault models but suffers from the non-
generality and low assurance limitations common to unit
testing approaches.

To address these limitations and facilitate formal analysis of
program behavior in fault-capable environments, we present
LAPSE (Logic for Analyzing Program Skip Effects), a frame-
work for formal verification of native code experiencing arbi-
trarily many (non-deterministic) single-instruction skip faults.
LAPSE is built atop the Picina [13] formal binary analysis
framework, which provides ISA-generic facilities for verified
lifting [14] into analysis-amenable IR, and verified symbolic
execution for sound traversal of all potential program control-
flows. LAPSE’s simulation and automation capabilities enable

automatic conversion of standard Picinze functional correct-
ness proofs into proofs that consider environments capable
of instruction skips. This generates fault-tolerant guarantees
of correctness for native code that is exposed to harsh or
adversarial environments.

Specifically, we present the following contributions:

1) We present LAPSE, the first framework that affords
machine-checked proofs of correctness for production-
level binary code in the presence of arbitrarily many
single-instruction skips.

2) We provide machinery for instantiating LAPSE for any
ISA, and implement the framework for 32-bit RISC-V.

3) We provide proof tactics for automating fault-aware
correctness proofs

4) We prove that the augmented implementations of two
security-critical cryptographic functions from OpenSSL
and BearSSL are correct even with at most one skipped
instruction.

5) We prove that an implementation of a Triple-Modular-
Redundant password checker is correct even with at
most one skipped instruction.

6) LAPSE will be made publicly available upon publication.

The remainder of this paper is structured as follows. Sec-

tion II introduces the formal foundations required for our work,
including Rocq, the Picinz binary analysis framework, and ex-
isting approaches to fault injection attacks and fault tolerance.
Section III presents the overall architecture and workflow of
LAPSE, explaining how fault-free proofs are systematically
extended to fault-aware ones. Section IV demonstrates the
practicality of the framework through several security-critical
case studies, illustrating both manual and automated proof
strategies. Section V details the design and implementation
of LAPSE, including its fault simulation semantics and proof
automation tactics. Section VI discusses the limitations of the
current approach, potential extensions to other fault models,
and lessons learned from our case studies. Finally, Section VII
situates this work within the broader landscape of fault injec-
tion research and bottom-up formal methods.

II. BACKGROUND
A. Rocq

Rocq [15] is an interactive theorem prover based on the Cal-
culus of Inductive Constructions (CiC), a dependently-typed
higher-order logic that unifies programs, specifications, and
proofs within the Gallina programming language. Dependent
types enable mathematical propositions to be parametrized
by program values, allowing for precise specifications that
relate machine states, traces, and invariants. For our purposes,
dependent types also allow proofs to annotate untyped binary
values in native programs with dependently-typed propositions
to facilitate the proof process.

Proofs in Rocq are constructed by incrementally refining
goals, or obligations, using tactics that encode steps of logical
reasoning. Tactics transform proof states by manipulating
assumptions, performing symbolic reasoning, or invoking au-
tomated solvers for specific tasks. Completed Rocq proofs are

Bit Widths w: N

Expressions e:=v|nmg|eile]m | erle2 == e3]m | e1 @ e2
| (e:w) |letv:=eqines | *m

Statements s=-|v:=-e| jmpe|exnn|si;s2

|e?s1:s2]s°

Contexts & Stores c¢,0: X :=v —~N

Exits x == [(fallthru) | a (destination address)
| 1% (hardware exception)

Programs p:X—=-N—s

Traces T={(x,0) | (x,0): T

Fig. 1: Picinae IL syntax

passed to its core proof-checker, which ensures that all goals
spawned from manipulating the initial theorem statement have
been proved down to the foundations of CiC.

Rocq supplies a rich module type system, allowing users to
construct generic units of formalization and proof automation
tactics. Specific formalizations and tactics can be generated
from these generic descriptions without having to manually
re-implementing them. This capability enables us to build
generic fault simulations and proof automation tactics that can
be instantiated for any Picinae-supported ISA.

B. Picinae

Picina is a platform in Rocq for instruction-level analysis
of executables. It affords machine-verification of any code
property expressible in CiC, including properties that describe
a program’s functional correctness, relating the state of the
machine at the program’s entry point to the state at its
exit points. Machine states are stores—partial functions from
real and abstract cpu elements to natural numbers. Machine
instructions are represented in Picinz intermediate language
(PIL), which is similar to the intermediate languages of other
reverse-engineering and binary analysis tools [16], [17]. Pro-
grams are functions from a store and virtual address to a PIL
statement and its size in bytes. This representation supports
both Harvard architectures and von Neumann architectures
capable of reasoning over self-modifying code.

Figure 1 shows the syntax of PIL. Instructions consist of
statements and expressions. Statements represent state update
and control transfers, while expressions represent the results
of instruction-level computations. Expressions read machine
state variables v, return binary constants n of a given bit width
w, read and write length-w values to/from memory, evaluate
standard binary arithmetic and logical operations @, cast
subexpressions to new bit widths, make scoped assignments to
variables (let-expressions), and return arbitrary width-w values
*my When modeling behaviors whose results are unspecified or
unpredictable on the target architecture. This final expression
form makes the IL’s operational semantics non-deterministic,
allowing for undefined or unpredictable instruction effects,
including faults.

Statement forms include no-op (), variable assignments,
control-flow transfers, hardware exceptions, sequences, con-

list_tail:
begz a0, done # hd = NULL ? goto done
loop:
1w al, 4(a0) # al = cur—->next
begz al, done # nxt = NULL ? found tail
mv a0, al # cur = nxt
J loop # continue loop
done:
ret # return cur

(a) Instruction skip-vulnerable routine

list_tail:

begz a0, done # hd = NULL ? goto done
begz a0, done
loop:
1w al, 4(a0) # al = cur—->next
1w al, 4(a0)
beqgz al, done # nxt = NULL ? found tail
begz al, done
mv a0, al # cur = nxt
mv a0, al
j loop # continue loop
J loop
done:
ret # return cur
ret

(b) DMR-augmented, instruction skip-tolerant routine

Fig. 2: RISC-V routines to retrieve the tail of a linked list

ditionals, and finite repetitions of statements that model ma-
chine instructions that contain internal loops (e.g., the rep
instruction prefix on Intel ISAs). Program executions are
represented as traces—sequences of store-exit pairs. Exits
describe where control flows after each program step, and are
either a program counter value or a hardware exception with
an integer identifier.

Typical Picinae proofs prove partial correctness of program
fragments w.r.t. trace properties using co-inductive reasoning.
Theorems specify an invariant set and exit function, where
the exit function defines the extent of the binary program slice
being verified. The invariant set is a partial map from traces to
propositions they must satisfy. The exit function is a boolean
valued function over stores and addresses defining whether
the trace has left the code fragment of interest. Each theorem
thereby asserts that all in-scope traces reachable from an initial
trace satisfy all invariants they reach. Invariants placed at the
exit points are postconditions for the verified code fragment.

Picinae supports a number of both general-purpose and em-
bedded computing architectures, such as x86-64, RISC-V, and
ARMVv6-8. Each ISA is defined within an Architecture
module. These modules instantiate Picina’s formalizations for
the target ISA, and generate tactics for symbolic execution and
simplification of program states and binary arithmetic. Fur-
thermore, Architecture modules may be used as inputs
to additional tooling, as discussed in Section V-B.

C. Fault Injection Vulnerabilities

Fault injection attacks deliberately induce transient hard-
ware faults to compromise the integrity of software systems.
These attacks exploit the gap between a program’s intended
semantics and its actual behavior under adverse physical
conditions. By inducing faults at precise moments during exe-
cution, attackers can bypass security checks, reverse-engineer
cryptographic secrets, or manipulate control flow to achieve
unauthorized outcomes [18]. The effects of a fault injection
attack are described by how precisely the attack can be aimed
at a specific region of the processor (spatial precision), and

how precisely the attack can be launched in a specific window
of time (temporal precision).

Faults can manifest in various forms depending on the attack
vector and target hardware. Instruction skip faults cause the
processor to skip one or more instructions entirely, effectively
replacing them with no-ops. Most often these skips are actually
corrupted instructions that have no effect on program state, so
treating them as skipped instructions is common. Biz-flip faults
corrupt individual bits in registers, memory, or instruction en-
codings, potentially altering operands, opcodes, or addresses.
Control-flow faults redirect execution to unintended program
locations by corrupting branch targets or conditions.

Common physical methods for inducing these faults include
voltage glitching, where brief fluctuations in the processor’s
power supply disrupt its normal behavior, and clock glitch-
ing, which violates the timing assumptions the processor
makes [19]. Electromagnetic fault injection (EMFI) uses pre-
cise pulses of radiation to induce currents in specific circuit
regions. EMFI attacks often utilize lasers for even finer spacial
and temporal precision, targeting individual transistors or
memory cells [20].

While these attack modes vary in cost, precision, and
invasiveness, instruction skip faults are among the most com-
monly observed and exploited attacks in practice [21], [22],
[23]. These faults are not necessarily caused an attacker,
but may also be induced by harsh environments, such as in
nuclear power plants or in outer space, where high levels
of background radiation may cause adverse effects in critical
systems.

Fault injection attacks are a realistic threat for any system
where an adversary has physical influence over the device, or
in the aforementioned harsh environments. Embedded systems,
IoT devices, smartcards, and secure enclaves are particularly
vulnerable due to their deployment in potentially hostile en-
vironments [24]. Notable attacks have demonstrated practical
breaks of AES [25], RSA [26], and ECC [27].

Ve N\ LAPSE
Binary Program ol Picina Fault-Tolerant
10 _—l_ Sound Fault Corrctness Proof
. Injection
a > Lifter "l SinJMaﬁon Meets Specification
Proof Guidance -— after Maximum of N
(e.g., invariants) [y= Automatic, skips
> Theory Library | | Fault-Aware
Automation Proof Strategies
Fault Model

Fig. 3: LAPSE Architecture

D. N-Modular Redundancy

N-Modular Redundancy is a fundamental fault tolerance
technique that defends against transient faults by replicating
critical computations N times, optionally voting on which
output to select, or comparing results to determine whether
a fault has occurred. The most common variant is Triple-
Modular Redundancy (TMR), which executes a computation
three times and uses a majority voting scheme to mask single
faults. The computation may or may not be implemented in
three distinct ways to limit the ability of persistent faults to
disrupt all three results consistently. When one computation
produces an incorrect result, the other two out-vote it, allowing
the system to continue operating correctly.

Dual-Modular Redundancy (DMR) uses two replicas, op-
tionally comparing the results and jumping to a fault handler
if a discrepancy is observed. We consider a specific form of
DMR that heavily utilizes duplicated, idempotent instructions.
An instruction is idempotent if it has the same result on
the program state whether it executes one time or many
times. Thus, if all instructions in a program are made to
be idempotent and are then duplicated, any number of non-
consecutive instruction skip faults can occur without altering
the functionality of the program.

Figure 2 shows an example of this instrumentation on a
RISC-V program for finding the tail of a linked list. Each
of the original program’s instructions are idempotent, so only
duplication is required in this case. If they were not, a
translation from standard instruction sequences to idempotent
sequences could secure the code [28].

III. OVERVIEW
A. Workflow

The development of fault-tolerant correctness proofs extends
the process of developing standard correctness proofs, requir-
ing semi-automated, formal analysis of program control-flow
behavior. The proof development process typically requires
two phases: (1) writing a standard correctness proof for the
program in a fault-unaware environment, and (2) automating
that proof’s invariant strategies to handle the many control-
flow paths that could arise in a fault-vulnerable environment.

Figure 3 shows LAPSE’s architecture and workflow. Users
provide two inputs: (1) the target binary, and (2) invariant sets.

The binary program is automatically lifted into semantically-
equivalent PIL. The lifted program is used for symbolic
execution and reasoning about the program’s behavior in the
invariant set and proof. Proofs are facilitated by tactics, theory
libraries, and formal definitions of fault mechanics provided
by LAPSE and Picinee.

B. Fault-Free Symbolic Analysis

Correctness proofs in Picinae perform symbolic interpreta-
tion of the target program, exploring all potentially-reachable
control-flow paths. Because reachability is undecidable in
general, Picinae conservatively treats all paths as possibly
reachable, providing theorems and tactics for eliminating
provably unreachable paths from consideration.

C. Automatic Fault-Aware Analysis

Extending a Picina proof to reason about instruction skips
primarily entails automating proof strategies developed in the
fault-unaware correctness proof. LAPSE also automatically
modifies loop invariants to reason about reachable fault paths.

The automation phase is necessary for writing proofs about
code in a fault-vulnerable environment because the possibility
of faults causes a goal space explosion, illustrated in Figure 4c
and Figure 4d. In the worst case this could increase in the
the proof space by a factor of n*, where n is the number
of instructions symbolically executed and £ is the maximum
number of faults to simulate. In a fault-unaware correctness
proof, each proof goal verifies a distinct, invariant point-
bounded path of execution. In a fault-aware correctness proof,
however, each step within such a path has a possibility of
faulting a new control-flow path from the current instruction
to the next invariant, and so spawns an extra goal.

Our solution to this space explosion problem leverages
a key observation: In N-modular redundant programs, the
extra proof work turns out to be redundant and memoizable.
Based on this realization, we innovate tactics for repeating the
original proof strategy at the end of each control-flow branch
to solve all extra goals automatically.

Finally, a prerequisite to constructing fault-aware correct-
ness proofs is augmenting Picina’s ISA semantics with two
virtual registers: the Fault Counter (FC) and Fault Timer (FT).
These track (1) the number of faults possible throughout
the remainder of symbolic execution, and (2) the number of

- AT N N RN
(@)) a-s-c A N\ a-sc)

\/"\/ A-F-G I’ |\'~._;/\|| A-C

‘. C=D=1g=C , " \'I‘\ A-F-G

B B \BY |c-D-E-G| BN A-B-G

/ \ / \ v - v*' ’.“\‘; A-B-D-E-G
c F c F c F! tyC <« (F; B-C
¥ At ? VA :: e B-F-G
v e . : Nt St 1| C-D-E-C
i o C-D-G
‘v o , Ve C-E-C
: o e
. A 2oa D-E-G)
N PN ey Ve Yy

. 9 5 9 <2 G) @

(a) Program Control Flow (b) Invariant Placement

(c) Fault-Unaware Proof

(d) Fault-Aware Proof Obligations

Obligations

Fig. 4: Relationship between a program’s control flow, its invariant placement, and the resulting proof obligations

instructions that have successfully executed since the last fault,
respectively. These are typically transparent to users of the
framework, and used purely internally to model fault behavior;
they are never accessed or assigned by target programs. The
virtual registers manifest in proofs as proof variables that
model fault states.

D. Model Assumptions

LAPSE assumes an execution model in which the processor
abides by the ISA subject to the fault model, and assumes
an ISA in which multi-threading, preemption, speculative ex-
ecution, out-of-order execution, and superscalar effects do not
affect ISA-intended behavior or contribute to faults. Our threat
model allows single-instruction skips at all instructions. Each
skip omits exactly one instruction and advances control flow
as if the instruction were absent. Arbitrary program-counter
corruption or multi-instruction skips (not to be confused with
multiple single-instruction skips) are presently out of scope,
and are discussed in Section VI.

IV. CASE STUDIES

We present three examples of fault-aware correctness proofs
in LAPSE. Each is compiled with gcc for 32-bit RISC-V with
the I, M, and D extensions enabled. Following compilation, the
programs were fully or partially hand-DMR-instrumented as
described in Section II-D, and assembled to machine code.
Listings for these programs can be seen in the appendix.

LAPSE is not limited to reasoning about DMR-augmented
programs. Any program resistant to instruction skips can
potentially be verified by our framework.

A. OpenSSL Cryptographic Memory-compare

We first examine CRYPTO_memcmp, a constant-time mem-
ory comparison routine from OpenSSL [29]. This routine is
extensively utilized in MAC verification and TLS [30], and is
therefore a high-priority target for attackers to inflict access
control violations. We present two fault-tolerant correctness

Module FaultModel <: FaultModel.
Definition max_faults 1.

Definition fault_spacing
Theorem fault_spacing_small
6 fault_spacing < 2732.

7 Proof. lia. Qed.

s End FaultModel.

[N O

0.

Fig. 5: FaultModel for environments that cause < 1 skip

proofs for this routine, one with a naive architecture showing
that the routine is correct for up to one fault, and another with
an automated architecture showing that the routine is correct
for up to two non-consecutive faults. Figures 9 and 10 show
the analyzed program.

LAPSE requires that users define a FaultModel module
that specifies the maximum number of skips that may occur
(max_faults), and the minimum number of non-faulted
instructions that must execute before another fault is possible
(fault_spacing). Figure 5 shows that for this proof, we set
max_faultsto 1l and fault_spacing to 0. Instantiating
this module generates automation for simulating faults and
reducing proof effort for fault-aware reasoning.

Equation (1) shows the correctness specification for
CRYPTO_memcmp:

return 0 <= (Vi,i < len = in_a[i] = in_b[i]) (1)

The target program accepts two pointers in_a and in_b
and a length argument len, and returns O if and only if the
contents of the two pointers are equal for the first Len bytes.
We first verify that the DMR-augmented routine satisfies this
specification in a fault-unaware environment before automat-
ing a fault-aware proof.

Figures 6a and 6b show the fault-unaware proof and the
fault-aware proof, respectively, with some details elided for
brevity. The key invariant states that after k& loop iterations,

1 Proof. 1 Proof.

2 apply prove_invs. (x begin co-induction *) 2 apply prove_invs. (x begin co-induction x)
3 3

4 (# Entry —-> Loop Invariant x) 4 (# Entry -> Loop Invariant x)

5 destruct PRE as (A0 & Al & A2 & Mem). { 5 destruct PRE as (A0 & Al & A2 & Mem).

6 step. 6

7 7

8 - (* len = 0 %) 8

9 repeat step. split; intro. lia. 9 repeat step;

10 - (* len <> 0 #) 10 (split; intro; 1lia) |

1 repeat step. lia. 1

12 exists 0. psimpl; repeat split; 1lia. 12 (exists 0; psimpl; repeat split; 1lia).
13 } 13

14 14

15 (¥ Loop Inv —> Loop Inv / Exit =) 15 (# Loop Inv —> Loop Inv / Exit #*)

16 destruct PRE as (k & Mem & A5 & Al & A2 16 destruct PRE as (k & Mem & A5 & Al & A2

17 & Bound & Eq) . | 17 & Bound & Eq) .

18 repeat step. 18

19 @ e e e —— e —— —— —— — — — — — — — — 19 e e — e —— e — e —— —— —— — — — — —
20 - (% solve loop invariant =) 20 Local Ltac solve_inv :=

21 exists (k + 1). psimpl. 21 exists (k + 1); psimpl;

2 repeat split; try lia. 2 repeat split; [lia|lia|solve_fault_invs
23 -— unfold k_equal. intros. 23 | unfold k_equal; intros X i Z;

24 apply or_xor_zero in H. 24 apply or_xor_zero in X;

25 destruct H. 25 destruct X;

2 assert (i < k \/ i = k) by lia. 26 assert (1 < k \/ i = k) as Y by 1lia;
27 destruct H2. 27 destruct Y;

28 now apply Eqg. 28 [now apply Eg

29 now subst. 29 |now subst]

30 —— intros. 30 | intros;

31 pose proof (k_equal_inv _ _ _ H). 31 pose proof (k_equal_inv H);

32 apply Eg in HO. 3 apply Eg in HO;

33 now rewrite H, N.lxor_nilpotent, HO. 33 now rewrite H, N.lxor_nilpotent, HO].
34 ceeescscsmcsssssssssssssssssssssssEssEsssssssssEssssmssss=ss g
35 - (* solve postcondition =) 35 Local Ltac solve_post :=

36 replace len with (1 + k) by lia. 36 replace len with (1 + k) by lia;

37 split; intro. 37 split; intro;

38 —— destruct (or_xor_zero H). 38 [destruct (or_xor_zero H);

39 rewrite H in »*. 39 rewrite H in x;

40 apply k_equal_step. 40 apply k_equal_step;

41 now apply Eq. now rewrite HO. 41 [now apply Eg | now rewrite HO]

) -—- replace (s R_AO) with 0. psimpl. %2 |replace (s R_AO) with 0; psimpl;

43 apply N.lxor_eq 0_iff. 43 apply N.lxor_eq O_iff;

4 symmetry. apply H. lia. 44 symmetry; apply H; lia;

45 apply k_equal_inv in H. 45 apply k_equal_inv in H;

46 apply Eg in H. now rewrite H. 46 apply Egq in H; now rewrite H].

47 } 47 repeat step; (solve_inv || solve_post) .

4 Qed. 4 Qed.

(a) Manual fault-unaware proof

(b) Automated fault-aware proof

Fig. 6: Correctness proofs for CRYPTO_memcmp. Separator lines highlight their nearly-identical structure.

register a0 = 0 if and only if the input arrays in_a, in_b
are equivalent for their first £ bytes. This invariant is proved
two times: (1) after starting at the entry point and reaching the
loop, and (2) after starting at the loop, not satisfying the break
condition, and reaching the loop again. The third main proof
case gives the user the postcondition as an obligation after k
symbolically interpreted loop iterations. Because the invariant
and postcondition are similar, the reasoning strategies for each
are nearly identical, requiring a few small lemmas regarding
notions of k-equality as used in the invariant, and the behavior
of logical OR and XOR as used in the update to register aO0.

From the fault-unaware correctness proof for DMR-

augmented CRYPTO_memcmp, we next define a fault model,
adapt the lifted IL and invariant set, and automate a proof of
correctness for an environment in which up to one instruction
skip may occur. The adaptations concern the fault counter
(FC) and fault timer (FT) proof variables introduced in Sec-
tion ITI-C. The mechanics of the FC and FT are discussed in
Section V, but for now it suffices to know that each step of
the symbolic interpreter spawns two new control-flow paths,
one in which the FC has been decremented if it was nonzero,
and one in which it remains unchanged.

To add faults to the computation model, we pass the lifted IL
representation of CRYPTO_memcmp to the inject_skips

function, which implements fault simulation in the symbolic
interpreter. Next, we augment the precondition invariant with
the assumption fault_assumptions, which automatically
encodes information about the values of FC and FT based on
the defined fault model. Each following internal invariant gains
the statement fault_invs, also encoding information about
FC and FT necessary to continue fault simulation.

The proof for the DMR-augmented CRYPTO_memcmp
shows that it still satisfies the correctness specification in
Equation (1) after a maximum of 1 instruction skip at any
point in the program. The proof’s architecture is intentionally
naive in comparison to the following example in that it always
advances the symbolic interpreter until all control paths reach
an invariant or postcondition, and then dispatches automatic
solvers. The separator lines in Figure 6 show the similarities
between the fault-aware and fault-unaware proofs; the auto-
matic solvers directly encode the proof strategies developed
in the fault-unaware proof.

Both the fault-unaware and fault-aware proofs consist of 30
lines of definitions and 60 lines of main proof code, and were
completed by an expert user in one hour and in 15 minutes,
respectively. Both rely on roughly 30 lines of lemmas.

B. BearSSL Conditional Memory-copy

Our second case study is br_ccopy, a constant-time
conditional memory copy routine from BearSSL [31]. This
routine is used in implementations of elliptic curve cryptogra-
phy in which constant-time table lookups are necessary [32].
Figures 11 and 12 show the analyzed program.

Equation (2) shows the correctness specification for
br_ccopy:

ctl =0 mem=mem’

2
ctl=1 Vii<len = dst[i] =src[t] @

The routine accepts two pointers, dst and src, a length
argument len, and a control argument ctl. If ct1 is zero,
memory is preserved throughout function execution, otherwise
the first len bytes of src are copied into dst. Similarly
to the previous example, we verify that the DMR-augmented
routine satisfies this specification both in a fault-unaware
environment and in an environment threatening up to one
single-instruction skip.

This fault-aware proof uses LAPSE’s automatic step tactic,
eager_step, to utilize a more careful strategy that limits
goal space explosion. Assuming the skip fault has not yet
occurred, each step of the symbolic interpreter spawns two
control flow paths: one in which the skip occurs, and one in
which it does not. After making each step, the already-faulted
path is fully traversed until an invariant or postcondition is
reached and then solved. Ignoring control flow path splits
caused by conditional branches, this limits the number of
symbolic execution goals kept in memory at any time to 2. The
invariant and postcondition solvers used in the fault-unaware
proof took an expert roughly 15 minutes to construct.

The fault-unaware correctness proof consists of 30 lines of
definitions and 80 lines of main proof code, completed by an

Call1 Call2 Call 3 Error Corrected
v v v v
v v v
v v v
v v v

TABLE I: CRYPTO_memcmp fault cases

expert user in roughly one hour. The fault-aware correctness
proof consists of 30 lines of definitions and 90 lines of main
proof code, completed by an expert user in roughly 30 minutes.
Both rely on roughly 30 lines of lemmas.

C. Triple-Modular Redundant Password Checker

Our third case study is TMR, a triple-modular redundant
password checker utilizing CRYPTO_memcmp. This routine
runs CRYPTO_memcmp three times and utilizes voting to
error-correct and produce a result. Its correctness under
single-instruction skips depends on its voter: given results
Ay, As, As, it returns! A; + Ay + A3 < 1. Unlike the
previous examples, TMR is not completely DMR-augmented,
and performs function calls. Figure 13 shows the analyzed
program.

TMR’s correctness specification is nearly identical to that
of CRYPTO_memcmp (except returning true rather than 0
if the passwords match). We verify that TMR satisfies this
specification both in a fault-unaware environment and in an
environment threatening up to one single-instruction skip. This
proof is substantially more difficult than the previous two and
offers insight into proofs of fault tolerance at larger scales.

Firstly, the previous two examples study leaf node functions
in the call-graph, significantly reducing the complexity of
their analysis. The problem of analyzing interprocedural binary
code is known to be harder [33], as it involves either trusting
or proving that the system ABI is followed by the callee, that
control does not leave the boundaries of the callee, etc. In
the case of DMR-style hardening, call instructions in a caller
cannot merely be duplicated on ISAs with architectural calling
conventions that involve register overloading. In RISC-V, the
argument register a0 is also used for storing function return
values, so duplicating call instructions is unsound.

Secondly, the fault-tolerance of the callee (proved in Sec-
tion IV-A) does not in this case rely on DMR code id-
ioms; therefore interprocedural flows cannot rely on a DMR-
based proof of fault tolerance. For example, even though
CRYPTO_memcmp’s function body is proven fault-tolerant, a
fault at its return instruction could fail to return its (correct)
result to the caller. To secure it, we therefore duplicate each
of its internal return instructions and ensure the final two
instructions are returns.

Because CRYPTO_memcmp is not hardened using DMR,
the invariant set for TMR must track each potential case of
whether faults already occurred, and if not, whether a fault

'CRYPTO_memcmp accumulates differences in its two input pointers via
an 8-bit logical-or, so Aj + A2+ A3 can never overflow and satisfy the 32-bit
< 1 comparison despite the pointers being non-equal.

Definition inject_skips (p program)
(s : store)
(a : addr) :=

1

2

3

4 match p s a with

5 | None => None

6 | Some (sz, instr) =>

7 Some (sz,

8 If (fault_spacing < FT &&
9 0 <? FC && Unknown)

10 Then

1 FC := FC - 1;
12 FT := 0

13 Else

14 FT := FT + 1;
15 instr)

16 end.

Fig. 7: Simplified definition of inject_skips

occurs within the callee. Table I shows how these cases
compound as more calls to CRYPTO_memcmp are added. The
new cases are outside the scope of some of eager_step’s
automation capabilities, and therefore require careful proof
engineering to traverse the set of possibilities.

Picinae’s machinery for reasoning about function calls sig-
nificantly reduces the size of the correctness proof, sav-
ing approximately 700 lines of proof code. The resulting
CRYPTO_memcmp proof consists of roughly 60 lines of proof
code in a fault-unaware context and 200 lines in a fault-aware
context, both completed by an expert user in roughly one hour.
The proof for TMR consists of roughly 260 lines of proof
code in a fault-unaware context and 400 lines in a fault-aware
context, both completed by an intermediate user in 12 hours.

V. SYSTEM DESIGN AND IMPLEMENTATION

LAPSE is implemented as a set of architecture-agnostic
definitions, theorems, and tactics in Rocq 8.19.2. The system
can be easily instantiated for new architectures with similar
semantic domains (registers, memory, etc.). Its faculties for
fault simulation consist of 60 lines of definitions and 50 lines
of theorems, and 10 lines of definitions and theorems and 75
lines of tactics for fault aware proof automation.

A. Simulation

Figure 7 shows the definition of inject_skips (with
smaller details elided for clarity). This function simulates
single-instruction skips by wrapping each instruction’s IL
sequence in a non-deterministic branch. On line 4, the IL of
the instruction at address a in program p is retrieved. Lines 5
and 6 determine whether an instruction exists at this address,
and if so, wraps it in the condition on line 8.

This condition checks whether enough steps have passed for
a fault to happen (if the FC is non-zero), and further branches
on an Unknown value (denoted *p in Figure 1). The check
against Unknown introduces non-determinism in the symbolic
interpreter. The interpreter expects its value to be a conditional
(either 0 or 1), and because it cannot be determined, proof
obligations for both are generated. This results in one goal
in which the instruction is replaced by decrementing FC and

Ltac es step solver :=

1

2 (time step; revgoals);

3 [> match goal with

4 | [|- nextinv _ _ _ _ _ 1 =>

5 es step solver

6 | _ => clean_fault_goals;

7 time (try solve [solver])
8 end ..].

9

10 Tactic Notation
1 "eager_step" tactic(arch_step)

12 "by" tactic(Solver) :=

13 (# look for fault assumptions / invs #)
14 (try process_faults);

15 (+ recursive careful step =)

16 (es arch_step Solver).

Fig. 8: eager_step tactic definition

clearing FT (lines 11-12) and one in which FC does not
change, FT is incremented, and the instruction operates as
normal (lines 14-15).

B. Automation

LAPSE provides several automation tactics. Figure 8 shows
the most prominent, eager_step, the memory-conservative
goal space exploration tactic used in automatic fault-tolerance
proofs. This tactic scans for assumptions in the proof context
(line 13) that reference FC and FT, and uses that information
to prepare the goal for symbolic execution. It then launches
symbolic execution and sorts the goals in order of increasing
FC (line 2). Line 3 selects each of these goals individually
and either continues stepping (line 5) or attempts to solve an
invariant or postcondition with a given solver tactic (line 7).

By selecting and solving goals individually, eager_step
often substantially reduces the system’s maximum memory
usage throughout the proof. A cursory test shows that just
by replacing repeat step with eager_step in the fault-
aware proof in Figure 6b, 3.6GB of memory are consumed as
opposed to the prior 4.4GB. This 20% decrease in memory
consumption becomes substantial as the number of faults
permitted by the user’s fault model increases due to the
polynomial-factor increase in goals generated by each step.

Furthermore, eager_step tolerates any modification to
the proof’s accompanying FaultModel, such as changing
the maximum number of faults or the spacing between them,
as long as the modified fault model does not break the
correctness of the function. To demonstrate, we provide an
additional proof in which CRYPTO_memcmp is shown to be
correct for up to 2 non-consecutive instruction skips. This
proof is identical to the one shown in Figure 6b, only using
eager_step instead of repeat step. Thus, the proof
generation logic of one fault-aware proof can be reused to
generate proofs for multiple non-breaking faults.

This automation is enclosed in a FaultTolerance func-
tor that takes as input a Picinaee Architecture module de-
scribing ISA semantics, allowing it to be applied to programs
of any architecture. When extending a Picina ISA definition
for use in LAPSE, virtual registers that store FC and FT must

be added. The user binds these virtual registers to the values
of FC and FT by instantiating a FaultToleranceConfig
module, an input to FaultTolerance. For our RISC-
V implementation of LAPSE, the register modification con-
sists of a single line change, and the instantiation of the
FaultToleranceConfig and FaultTolerance mod-
ules consists of 20 lines of code.

VI. DISCUSSION
A. Memory Corruption

Future work can extend LAPSE to reason about memory
corruption faults through non-deterministic corruption sim-
ulation, similarly to how it reasons about instruction skip
events. At each step, the symbolic executor branches on
whether a corruption occurs, conditionally assigning abstract,
unconstrained values to memory locations before executing
an instruction. This approach naturally fits within LAPSE’s
existing fault simulation framework.

Realistically modeling the semantics of memory corruption
events is an important challenge for such future work. A
model that corrupts all memory at every execution step is
overly pessimistic, since it excludes nearly all programs that
use memory. Effective formalization therefore requires careful
choice of constraints that reflect realistic fault models while
maintaining proof tractability.

One such choice is to provide a spatial bound to memory
corruption events in a similar manner to how LAPSE already
defines bounds on instruction skip occurrences and spacing.
If the fault model admits memory corruption of at most n
consecutive bytes per fault, programs that maintain redundant
copies of data structures larger than n bytes, or separated by
at least n bytes, can be verified. Because no single corruption
event can affect both copies, dynamic consistency checks
become feasible and potentially verifiable. This approach is
particularly suitable for n < 8192, as modern DRAM rows are
usually 8K in length [34], so corruption events larger than 8K
require additional reasoning and formalization of the physical
memory layout.

Another LAPSE-compatible approach for simulating mem-
ory corruption explicitly assumes that consecutive steps of
symbolic execution do not exhibit differences in memory that
are known to be very low-probability events in real adversarial
environments. For example, assuming that a specific memory
region will not remain corrupted throughout consecutive pro-
gram steps enables verification of programs that read from
memory multiple times to ensure that the values read into
registers match the values that exist in memory.

B. Multiple-Instruction Skip Faults

Our current prototype focuses on single-instruction skip
faults, which are the most typical skip-faults in practice. Future
work can support multiple-instruction skip faults by augment-
ing the fault-aware ISA semantics with a Multi-Instruction
Skip Counter (MISC). This counter is zeroed until a fault oc-
curs, after which it takes any value up to mskip_max_length,
which is configured in the user’s FaultModel. As long as

MISC is non-zero, the current instruction does not execute,
and MISC is decremented. This generalizes single-instruction
skip models by setting multi_skip _max_length = 1.

The main challenge is a corresponding increase in proof
space size, since each step generates mskip_max_length ex-
tra goals, which grows much faster than the single-instruction
skip methodology if max_faults is larger than 1. Future work
should address this by considering code hardening strategies
similar to DMR that yield redundancies in these extra proof
goals, allowing proof automation to solve the goals by coa-
lescing the work into common subgoals or lemmas.

C. Alternative Forms of Faults

Specific alternative fault categories are not suitable for
formal reasoning due to goal space explosions that dwarf those
seen in skip fault proofs. For example, naively simulating
register corruption by assigning random values to any register
could produce up to several hundreds of new goals at each
symbolic step. Many of these new goals might have had return
addresses and stack pointers corrupted, a corruption many
threat models do not include [35]. Not included in this work
for similar reasons are condition flag corruption and instruction
skips induced by modification of the program counter.

However, load and store faults could be simulated and
handled in a very similar manner to LAPSE’s treatment of
skips. Programs that read out of duplicate memory ranges and
compare results to detect faults could also be verified using
this technique.

D. Skip Fault Side-Effects

Instruction skips are a special case of the more general fault
model in which an attacker can corrupt instructions before
or during decoding [36]. These corrupted instructions often
effectively skip the original instruction because the corrupted
instruction is semantically equivalent to a no-op—it does
not affect program values that are relevant to the program’s
correctness. LAPSE therefore does not include all potential
side-effects in its simulation of skip-like faults.

E. Automation

Althgouh LAPSE and Picina provide automation facilities
for symbolic execution, type-safe lifting of binaries to IL, fault
simulation and reasoning, and fixed-width binary arithmetic
solving, constructing fault-aware correctness proofs still re-
quires non-trivial manual effort. The examples in Section IV
show that the manual effort required to complete fault-aware
correctness proofs is on the order of hours per routine.

This manual effort arises in different tasks depending on de-
tails of the program being analyzed. For the DMR-augmented
programs, the majority of manual effort was devoted to con-
structing the fault-unaware correctness proof. Formal proofs
of binary functional correctness are known to be difficult to
construct, requiring expert knowledge of each component of
the program and corresponding mathematical skill for trans-
lating these to the automated theorem prover. The process of
converting these proofs to fault-aware proofs was significantly
easier in comparison.

For TMR, however, the majority of the manual effort was in
constructing the fault-aware correctness proof. This is both due
to overall target code complexity and its non-uniform DMR
augmentation, which makes it substantially more difficult to
reason about the behavior of its calls to CRYPTO_memcmp
than in the fault-unaware proof. Developing logical predicates
that generalize the descriptions of CRYPTO_memcmp’s cor-
rectness under all placements of faults within the function
would solve these issues and give way to more general fault-
aware automation, but is out of scope of this work.

VII. RELATED WORK

Fault Injection Defenses and Analysis. Fault injection com-
monly appears in real-world attacks [37], [38], [39], [40],
especially in embedded environments where attackers can have
greater physical influence. As such, protection against fault
injection is a well-established area of research with a range of
approach angles.

Some approaches attempt to add defenses against faults
to the program. These defenses can be added during the
compilation process [41], or can be applied to the binary
after the fact [28]. Alternatives include algorithm-specific
defenses [42]. These approaches vary in generalization; some
are bound to specific use cases (e.g., specific cryptographic
algorithms or fault protections), or are built to work with
language-specific compilers. Some methods of applying fault-
tolerance defenses to binary programs have been proved to
maintain the semantics of the original program under skip fault
attacks [43].

Methods for analyzing the fault-tolerance of programs are
prevalent. For example, target codes can be represented as SAT
problems [44] or interpreted using symbolic execution [45].
Analysis can also be performed through empirical testing
of the target (e.g., [46], [47]), though this has the general
disadvantage of incomplete coverage.

Formal Binary Analysis. Recent years have seen a blossoming
of binary analysis backed by machine-checked proofs of
correctness. Islaris [48] combines SAIL [49] and Isla [50] to
create trusted program traces outside of Rocq, then uses Rocq
to prove properties about them. IsaBIL [51] embeds BAP’s
IL [16] in Isabelle/HOL and uses it to reason about program
behavior using Hoare logic, effectively extending BAP with
Isabelle/HOL’s machine-checked front end. A relational logic
for unstructured programs in HOL Light reasons about pro-
gram equivalence and total correctness of assembly codes [52].

VIII. CONCLUSION

We presented LAPSE, a framework for constructing
machine-checked correctness proofs for native code in the
presence of arbitrarily many single-instruction skip faults.
LAPSE performs fault-aware symbolic execution by wrapping
a program’s intermediate representation in a non-deterministic
construct that may skip an instruction. This non-determinisim
forces the user to reason about instruction skips at each
potential skip site, ensuring that any invariant or postcondi-
tion respects all fault possibilities. Users may configure the

10

parameters of the fault simulation by adjusting values in a
FaultModel module.

We evaluated LAPSE on security-critical routines from
OpenSSL and BearSSL, as well as a triple-modular-redundant
password checker. The proofs for these routines showed that
the development of fault-aware correctness proofs often re-
quires only a trivial amount of modification of a standard
correctness proof. LAPSE automated much of this process via
the eager_step tactic, which comprehensively traverses all
potential control-flow paths and limits memory consumption.

LAPSE provides a foundation for richer fault simulation
techniques via the patterns set in inject_skips and
FaultModel. We discuss methods for extending the frame-
work to reason about bounded memory corruption and multi-
skip fault events. Finally, scaling these techniques to larger
systems and more complex interprocedural code remains an
important future research direction, particularly for mission-
critical systems where physical fault threats are of significant
concern. Overall, LAPSE demonstrates that formal verification
need not assume idealized hardware to remain tractable. By
bringing fault injection directly into the scope of machine-
checked proofs, this work moves formal methods closer to the
realities faced by secure and dependable systems deployed in
adversarial or harsh environments.

[1]

[2]

[3]

[4]

[5]

[6]

[7

—

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

REFERENCES

DARPA, “High-assurance cyber military systems (hacms),”
2026. [Online]. Available: https://www.darpa.mil/research/programs/
high-assurance-cyber-military-systems

M. Bozzano, H. Bruintjes, A. Cimatti, J.-P. Katoen, T. Noll, and
S. Tonetta, Formal Methods for Aerospace Systems. Singapore:
Springer Singapore, 2017, pp. 133-159. [Online]. Available: https:
//doi.org/10.1007/978-981-10-4436-6_6

X. Leroy, “Formal verification of a realistic compiler,” Commun.
ACM, vol. 52, no. 7, p. 107-115, Jul. 2009. [Online]. Available:
https://doi.org/10.1145/1538788.1538814

J. Guan, H. Li, X. Li, X. Wang, B. Wang, Q. Wang, S. Qin, M. He,
M. Armanuzzaman, and Z. Zhao, “Formally verifying the state machine
of tls 1.3 handshake in openssl,” in I[EEE INFOCOM 2025 - IEEE
Conference on Computer Communications, 2025, pp. 1-10.

S. Berezin, “Model checking and theorem proving: A unified frame-
work,” Ph.D. dissertation, 2002, copyright - Database copyright Pro-
Quest LLC; ProQuest does not claim copyright in the individual under-
lying works; Last updated - 2025-09-17.

D. Wheeler, “How to prevent the next heartbleed,” Apr 2024. [Online].
Available: https://dwheeler.com/essays/heartbleed.html

G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, “sel4: formal verification of an os kernel,”
in Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles, ser. SOSP 09. New York, NY, USA: Association
for Computing Machinery, 2009, p. 207-220. [Online]. Available:
https://doi.org/10.1145/1629575.1629596

R. Kumar, M. O. Myreen, M. Norrish, and S. Owens, “Cakeml:
a verified implementation of ml” in Proceedings of the 4lIst
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’'14. New York, NY, USA: Association
for Computing Machinery, 2014, p. 179-191. [Online]. Available:
https://doi.org/10.1145/2535838.2535841

R. E. Lyons and W. Vanderkulk, “The use of triple-modular redundancy
to improve computer reliability,” IBM journal of research and develop-
ment, vol. 6, no. 2, pp. 200-209, 1962.

E. P. Kim and N. R. Shanbhag, “Soft n-modular redundancy,” IEEE
Transactions on Computers, vol. 61, no. 3, pp. 323-336, 2010.

D. Avresky, J. Arlat, J.-C. Laprie, and Y. Crouzet, “Fault injection for
formal testing of fault tolerance,” IEEE Transactions on Reliability,
vol. 45, no. 3, pp. 443-455, 1996.

A. Serrano-Cases, J. Isaza-Gonzilez, S. Cuenca-Asensi, and
A. Martinez-Alvarez, “On the influence of compiler optimizations
in the fault tolerance of embedded systems,” in 2016 IEEE 22nd
International Symposium on On-Line Testing and Robust System Design
(IOLTS), 2016, pp. 207-208.

K. W. Hamlen, D. Fisher, and G. R. Lundquist, “Source-free
machine-checked validation of native code in Coq,” in Proceedings of
the 3rd ACM Workshop on Forming an Ecosystem Around Software
Transformation, ser. FEAST’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 25-30. [Online]. Available:
https://doi.org/10.1145/3338502.3359759

F. Verbeek, J. A. Bockenek, Z. Fu, and B. Ravindran, “Formally verified
lifting of C-compiled x86-64 binaries,” in Proceedings of the 43rd
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 2022, pp. 934-949.

The Rocq Development Team, “The Rocq Prover,” Mar 2025. [Online].
Available: https://rocq-prover.org

D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “BAP:
A binary analysis platform,” in Computer Aided Verification -
23rd International Conference, CAV 2011, Snowbird, UT, USA,
July 14-20, 2011. Proceedings, ser. Lecture Notes in Computer
Science, G. Gopalakrishnan and S. Qadeer, Eds., vol. 6806.
Springer, 2011, pp. 463-469. [Online]. Available: https://doi.org/10.
1007/978-3-642-22110-1_37

C. D. B. Knighton, “Ghidra - Journey from Classified NSA Tool to Open
Source.”

T. Chiu and W. Xiong, “Sok: Fault injection attacks on cryptosystems,”
in Proceedings of the 12th International Workshop on Hardware and
Architectural Support for Security and Privacy, ser. HASP ’23. New
York, NY, USA: Association for Computing Machinery, 2023, p.
64-72. [Online]. Available: https://doi.org/10.1145/3623652.3623671

11

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]
[27]
(28]
[29]
(30]
(31]

[32]
(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

J. Breier and X. Hou, “How practical are fault injection attacks, really?”
IEEE Access, vol. 10, pp. 113122-113 130, 2022.

M. A. Elmohr, H. Liao, and C. H. Gebotys, “EM fault injection on
ARM and RISC-V,” in 2020 21st International Symposium on Quality
Electronic Design (ISQED), 2020, pp. 206-212.

V. S. Nguyen, V. Grosso, and P-L. Cayrel, “Practical persistent fault
attacks on AES with instruction skip,” JACR Communications in Cryp-
tology, vol. 2, no. 1, 2025.

A. Adiletta, M. C. Tol, K. Derya, B. Sunar, and S. Islam, “Leapfrog:
The rowhammer instruction skip attack,” 2025. [Online]. Available:
https://arxiv.org/abs/2404.07878

Espressif, “Espressif security advisory concerning fault injection
and secure boot (CVE-2019-15894),” Sep 2019. [Online]. Avail-
able: https://www.espressif.com/en/news/Espressif_Security_Advisory_
Concerning_Fault_Injection_and_Secure_Boot

A. Gangolli, Q. H. Mahmoud, and A. Azim, “A systematic review of
fault injection attacks on IoT systems,” Electronics, vol. 11, no. 13, p.
2023, 2022.

A. Dehbaoui, J.-M. Dutertre, B. Robisson, and A. Tria, “Electromagnetic
transient faults injection on a hardware and a software implementations
of AES,” in 2012 Workshop on Fault Diagnosis and Tolerance in
Cryptography, 2012, pp. 7-15.

A. Sidorenko, J. van den Berg, R. Foekema, M. Grashuis, and J. de Vos,
“Bellcore attack in practice,” Cryptology ePrint Archive, Paper
2012/553, 2012. [Online]. Available: https://eprint.iacr.org/2012/553

K. Schneider, L. Auer, and A. Wagner, “Fault attacks on ECC signa-
ture verification,” JACR Transactions on Cryptographic Hardware and
Embedded Systems, vol. 2025, no. 4, pp. 1010-1052, 2025.

N. Moro, K. Heydemann, E. Encrenaz, and B. Robisson, “Formal veri-
fication of a software countermeasure against instruction skip attacks,”
Journal of Cryptographic Engineering, vol. 4, no. 3, pp. 145-156, 2014.
OpenSSL, “Crypto_memcmp,” 2026. [Online]. Available: https://docs.
openssl.org/3.3/man3/CRYPTO_memcmp/

——, “ssl/record/methods/tls_common.c,” 2025.

BearSSL, 2018. [Online]. Available: https://bearssl.org/

——, 2018. [Online]. Available: https://bearssl.org/constanttime.html

J. Bockenek, F. Verbeek, and B. Ravindran, “Exceptional interprocedural
control flow graphs for x86-64 binaries,” in International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer, 2024, pp. 3-22.

T. M. O. Mutlu, “Memory performance attacks: Denial of memory
service in multi-core systems,” in USENIX security, vol. 108, 2007.

F. Q. Yuan, “Formal framework and tools to derive efficient application-
level detectors against memory corruption attacks,” Ph.D. dissertation,
University of Illinois at Urbana-Champaign, 2010.

H. Jiang, X. Zhu, and J. Han, “Instruction-fetching attack and practice
in collision fault attack on AES,” Symmetry, vol. 14, no. 10, p. 2201,
2022.

R. Buhren, H.-N. Jacob, T. Krachenfels, and J.-P. Seifert, “One glitch
to rule them all: Fault injection attacks against amd’s secure encrypted
virtualization,” in Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, 2021, pp. 2875-2889.

Z. Kazemi, A. Papadimitriou, I. Souvatzoglou, E. Aerabi, M. M. Ahmed,
D. Hely, and V. Beroulle, “On a low cost fault injection framework for
security assessment of cyber-physical systems: Clock glitch attacks,” in
2019 IEEE 4th International Verification and Security Workshop (IVSW).
IEEE, 2019, pp. 7-12.

X. M. SaB, R. Mitev, and A.-R. Sadeghi, “Oops..! i glitched it again! how
to {Multi-Glitch} the {Glitching-Protections} on {ARM }{TrustZone-
M},” in 32nd USENIX Security Symposium (USENIX Security 23), 2023,
pp. 6239-6256.

C. Bozzato, R. Focardi, and F. Palmarini, “Shaping the glitch: optimizing
voltage fault injection attacks,” TACR transactions on cryptographic
hardware and embedded systems, pp. 199-224, 2019.

B. Pesin, S. Boulmé, D. Monniaux, and M.-L. Potet, “Formally verified
hardening of C programs against hardware fault injection,” in Proceed-
ings of the 14th ACM SIGPLAN International Conference on Certified
Programs and Proofs, 2025, pp. 140-155.

M. Christofi, B. Chetali, L. Goubin, and D. Vigilant, “Formal verifi-
cation of a CRT-RSA implementation against fault attacks,” Journal of
Cryptographic Engineering, vol. 3, no. 3, pp. 157-167, 2013.

J. Richter-Brockmann, A. R. Shahmirzadi, P. Sasdrich, A. Moradi,
and T. Giineysu, “Fiver-robust verification of countermeasures against

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

fault injections,” TACR Transactions on Cryptographic Hardware and
Embedded Systems, pp. 447-473, 2021.

H. Tan, P. Gao, F. Song, T. Chen, and Z. Wu, “SAT-based formal ver-
ification of fault injection countermeasures for cryptographic circuits,”
IACR Transactions on Cryptographic Hardware and Embedded Systems,
vol. 2024, no. 4, pp. 1-39, 2024.

M.-L. Potet, L. Mounier, M. Puys, and L. Dureuil, “Lazart: A symbolic
approach for evaluation the robustness of secured codes against control
flow injections,” in 2014 IEEE Seventh International Conference on
Software Testing, Verification and Validation. 1EEE, 2014, pp. 213-222.
V. Khuat, J.-M. Dutertre, and J.-L. Danger, “Software countermeasures
against the multiple instructions skip fault model,” Microelectronics
Reliability, vol. 155, p. 115370, 2024.

S. Patranabis, A. Chakraborty, and D. Mukhopadhyay, “Fault tolerant
infective countermeasure for aes,” in International conference on secu-
rity, privacy, and applied cryptography engineering. Springer, 2015,
pp. 190-209.

M. Sammler, A. Hammond, R. Lepigre, B. Campbell, J. Pichon-
Pharabod, D. Dreyer, D. Garg, and P. Sewell, “Islaris: verification of
machine code against authoritative ISA semantics,” in PLDI '22: 43rd
ACM SIGPLAN International Conference on Programming Language
Design and Implementation, San Diego, CA, USA, June 13 - 17, 2022,
R. Jhala and I. Dillig, Eds. ACM, 2022, pp. 825-840. [Online].
Available: https://doi.org/10.1145/3519939.3523434

A. Armstrong, T. Bauereiss, B. Campbell, A. Reid, K. E. Gray,
R. M. Norton, P. Mundkur, M. Wassell, J. French, C. Pulte,
S. Flur, I. Stark, N. Krishnaswami, and P. Sewell, “ISA semantics
for ARMvS8-a, RISC-V, and CHERI-MIPS,” Proc. ACM Program.
Lang., vol. 3, no. POPL, pp. 71:1-71:31, 2019. [Online]. Available:
https://doi.org/10.1145/3290384

A. Armstrong, B. Campbell, B. Simner, C. Pulte, and P. Sewell,
“Isla: integrating full-scale ISA semantics and axiomatic concurrency
models (extended version),” Formal Methods Syst. Des., vol. 63,
no. 1, pp. 110-133, 2024. [Online]. Available: https://doi.org/10.1007/
$10703-023-00409-y

M. Griffin, B. Dongol, and A. Raad, “Isabil: A framework for
verifying (in)correctness of binaries in Isabelle/HOL,” in 39th
European Conference on Object-Oriented Programming, ECOOP
2025, June 30 to July 2, 2025, Bergen, Norway, ser. LIPIcs,
J. Aldrich and A. Silva, Eds., vol. 333. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 2025, pp. 14:1-14:30. [Online]. Available:
https://doi.org/10.4230/LIPIcs. ECOOP.2025.14

D. Mazzucato, A. Mohamed, J. Lee, C. Barrett, J. Grundy, J. Harrison,
and C. S. Pasdreanu, “Relational Hoare logic for realistically modelled
machine code,” in International Conference on Computer Aided Verifi-
cation. Springer, 2025, pp. 389-413.

12

CRYPTO_memcmp :

beg az,zero, .L4
mv a5, a0 CRYPTO_memcmp :
add a2,a0,az beg a2,zero, .L4
1i a0, 0 beqg az,zero, .L4
.L3: mv a5,a0
lbu a3, 0(ab) mv a5, a0l
1lbu a4,0(al) add t0,a0,a2
XOr ad,a4d,a3s add t0,a0,az2
or al0,a0,a4d mv a2,t0
addi ab5,a5,1 mv a2,to
addi al,al,l l} a0, 0
bne a5,a2, .13 1i a0,0
ret L3
.L4: 1lbu a3, 0 (ab)
1i a0,0 lbu a3, 0 (ab)
ret 1lbu a4,0(al)
. 1bu a4,0(al)
Fig. 9: CRYPTO_memcmp xor t0,a4, a3
XOor t0,a4,as3
mv a4,to
nv a4,to
APPENDIX o 20" 20, 24
Figures 9 and 10 show the RISC-V assembly code for or t0,a0, a4
the CRYPTO_memcmp routine from OpenSSL. The former is mv a0, t0
generated by GCC, and the latter has been manually DMR- :Zdi ig' Zg .
1nst1.'umented to resist non-consecutive faults. addi £0,a5,1
Figures 11 and 12 show the RISC-V assembly code for v a5,t0
the br_ccopy routine from BearSSL. These programs are mv as5,to
again generated by GCC and manually DMR-instrumented, addi t0,al,l
ivel addi t0,al, 1l
resp'ectlve y. - al t0
Figure 13 shows the RISC-V assembly code for the TMR v al,to
routine. The DMR-augmented form of this routine replaces bne a5,a2,.L3
non-idempotent instruction sequences with idempotent ones, bne a5,az, .13
and duplicates each instruction in TMR except for call ; EE
instructions. The CRYPTO_memcmp subroutine is unchanged 1 ,.
in the DMR-augmented form of the program. 1i a0,0
1i a0,0
ret
ret

Fig. 10: Fault-Tolerant CRYPTO_memcmp

br_ccopy:
neg a0,a0
add a6,al,as3
beq a3, zero, .L1
.L3:
1bu a4, 0 (al)
1lbu a5, 0 (a2)

addi al,al, 1
addi az2,a2,1

XOr ab5,a4d,ab

and a5,ab5,al

Xor ab,ab, a4

sb a5,-1(al)

bne al,a6, .L3
Ll

ret

Fig. 11: br_ccopy

13

br_ccopy:

L3

Ll

neg
neg

mv
add
add
beqg
beg

1lbu
1lbu
1lbu
1lbu
addi
addi
mv
mv
addi
addi
mv
mv
XOor
XOr
mv
mv
and
and
mv
mv
XOr
XOor
mv
mv
sb
sb
bne
bne

ret
ret

t0,al

t0, a0l

al0,to

a0, t0
a6,al,as3
a6,al, a3
a3, zero, .L1
a3, zero, .L1

al, toO
t0,a2,1
t0,a2,1
a2, to
az, to
t0,a4,ab
t0,a4,ab
a5, to
a5, to
t0,a5, a0
t0,a5,al
a5, to
a5, to
t0,a5, a4
t0,ab5, a4
a5, to
a5, to
a5,-1(al)
a5,-1(al)
al,a6, .L3
al,a6, .L3

Fig. 12: Fault-Tolerant br_ ccopy

14

CRYPTO_memcmp :

L3

.L4:

TMR:

beg
mv
add
1i

1lbu
1lbu
Xor
or
addi
addi
bne
ret

1i
ret

addi

call

addi
jr

a2,zero, .L4
a5, a0
a2,al,az
a0, 0

a3, 0 (ab)
a4, 0 (al)
ad,ad, a3
a0,a0,a4
ab5,a5,1
al,al, 1
a5,a2, .L3

a0,0

CRYPTO_memcmp
s3,a0
a2,s2
al, sl
a0, s0
CRYPTO_memcmp
s4,al
a2,s2
al, sl
a0, s0
CRYPTO_memcmp
ab,s3
a4d,s4
ab5,ab, a4
a0, a0
a0, a5, a0

s3,12 (sp
s4, 8 (sp)

sp, sp, 32
ra

Fig. 13: TMR

