
Lapse
Automatic, Formal Fault-Tolerant Correctness Proofs for Native Code

Charles Averill, Ilan Buzzetti, Alex Bellon, Kevin Hamlen

The University of Texas at Dallas
UC San Diego

February 2026

Averill, Buzzetti, Bellon, Hamlen (UTD, UCSD) Lapse February 2026

Background

Hardware-Software Contract

Users and developers of software
trust that hardware behaves as
specified in the ISA
CPU developers design with
hardware invariants in mind -
properties of the physical system
that must be constant or within
bounds over time
Some of these invariants are
trusted, e.g., “the CPU will
receive constant voltage within
known tolerances” or “the clock
signal’s frequency does not drift
farther than 15ppm”

Instruction Set Architecture

CPU

Power
Supply Network Memory I/O

Operating System

Application Software

Averill, Buzzetti, Bellon, Hamlen (UTD, UCSD) Lapse February 2026

Background

Contract Violations

Hardware invariants can be invalidated without proper protection,
either by harsh or unsuitable environments, or by an adversary
Many adverse effects: memory corruption, register corruption,
instruction skips, decoding pipeline corruption, etc.

Averill, Buzzetti, Bellon, Hamlen (UTD, UCSD) Lapse February 2026

Challenges

Software Fault Tolerance

Unfortunately, when developing software for critical systems, we must take
extra steps to handle contract violations:

Control duplication: run code multiple times to detect or correct
errors
Data duplication: store multiple copies of sensitive data in memory
to detect or correct errors
Runtime checks of invariants, state consistency, etc.
N-version programming: implement critical routines in multiple
different ways to prevent systematic error propagation
Fail-stops, state rollbacks, ASLR, …

How well does any of this work?

Averill, Buzzetti, Bellon, Hamlen (UTD, UCSD) Lapse February 2026

Challenges

Limitations

All of these solutions see practical use in critical systems, but we see some
common limits:

Complexity: All of these methods increase the complexity of the
target program, which increases the likelihood for implementation
bugs
Probability: Many approaches assume that random events (e.g.,
cosmic ray bit flips) will have random global behavior - but they
might not!

Complexity and non-determinism make it very difficult to provide what
these methods sought to provide in the first place: assurance.

Averill, Buzzetti, Bellon, Hamlen (UTD, UCSD) Lapse February 2026

Challenges

Formal Attempts

Modern FT efforts often have formal foundations - and limitations!
PVS: HOL ITP used extensively at NASA to formally verify fault
tolerant systems - but is aimed at program specifications, not
implementations
This paper claims to formally verify a binary rewriter that generates
skip-tolerant Thumb-2 binaries - but only model checks the rewriter
rules, rather than the rewriter tool
This one claims to verify an AES implementation against fault
injection attakcks - but the proof assumes no control-flow attacks and
only model checks those scenarios and adds randomization to limit
the likelihood

These are steps in the right direction, but reveal that getting this
assurance is ridiculously difficult. That’s why this problem wasn’t
solved 50 years ago when bit flips were discovered!

Averill, Buzzetti, Bellon, Hamlen (UTD, UCSD) Lapse February 2026

https://eprint.iacr.org/2013/679.pdf
https://eprint.iacr.org/2015/493.pdf

Challenges

Challenges in Formal Fault Tolerance

Use of model checking in previous approaches should hint at one big
problem: state space explosion!
Common in binary analysis: disassembly is undecidable, CFG recovery
is undecidable, binary arithmetic requires expert analysis or heavy
SMT solver usage, modeling hardware interaction...
Framework modeling decisions, expressiveness of host framework,
non-determinism, and so on and so on

A-B-C
A-F-G

C-D-E-C
C-D-E-G

A

G

E

D

FC

B

A-B-C
A-C

A-F-G
A-B-G

A-B-D-E-G
B-C

B-F-G
C-D-E-C
C-D-G
C-E-C

C-D-E-G
D-E-G

A

G

E

D

FC

B
Memory

0 2w

buf1 buf2

buf3

buf4......buf4

buf5

buf6

Averill, Buzzetti, Bellon, Hamlen (UTD, UCSD) Lapse February 2026

Challenges

The Bare Minimum

If you want to get real assurances for real code, you need a system that
looks something like:

Sound symbolic execution of machine code to ensure all
possibilities are covered
ISA semantics with non-determinism to handle UB, hardware
interactions, and to model faults
Flexible intermediate representation to encode fault behaviors in
Machine-checked proofs at every step
Bonus points for automation and generality (i.e., multiple ISAs)

A framework for formally verifying all control-flow paths of binary code
with baked-in non-determinism, a highly flexible IR in which to encode
arbitrary types of hardware faults that can be automated and utilized
for various architectures. Sounds like a lot of work!

Averill, Buzzetti, Bellon, Hamlen (UTD, UCSD) Lapse February 2026

Solution

A Lot of Work

Introducing Lapsea, the first proof
framework for developing machine-checked,
fault-tolerant proofs of correctness.

ISA-generic, instantiated to RISC-V
Designed with instruction skips in mind,
extensible to memory, register, decoder
corruption, branch poisoning, …
Declarative fault models
Automation-capable
Native embedding of non-determinism
Built in Rocq
FT proofs follow from FF proofs

a“Logic for Analyzing Program Skip Effects”

Fault-Tolerant
Corrctness Proof

Meets Specification
after Maximum of N

skips

LAPSE

Lifter

Theory Library
Automation

Picinæ
Sound Fault

Injection
Simulation

Automatic,
Fault-Aware

Proof Strategies

Proof Guidance
(e.g., invariants)

Binary Program

Fault Model

Averill, Buzzetti, Bellon, Hamlen (UTD, UCSD) Lapse February 2026

Solution

Lapse Proof Lifecycle

1. Expert analyzes binary, verifies program in fault-free environment
2. User defines FaultModel to generate fault tolerance proof machinery
3. Wrap lifted program in inject_skips to simulate instruction skips

during symbolic execution
4. Write solvers via simple syntactic adjustment of initial proof
5. Launch symbolic execution with solvers to handle invariant sub-proofs

Definition inject_skips p s a :=
match p s a with
| None => None
| Some (sz, instr) =>

Some (sz,
If (fault_spacing < FT &&

0 <? FC && Unknown)
Then

FC := FC - 1;
FT := 0

Else
FT := FT + 1;
instr) end.

Module MyModel <: FaultModel.
Definition max_faults := 1.

Definition fault_spacing := 0.
Theorem fault_spacing_small :

fault_spacing < 2^32.
Proof. lia. Qed.

End MyModel.

Averill, Buzzetti, Bellon, Hamlen (UTD, UCSD) Lapse February 2026

Solution

Results

3 example proofs written for to show invulnerability against
non-consecutive instruction skip attacks:

DMR-augmented CRYPTO_memcmp from OpenSSL
DMR-augmented br_ccopy from BearSSL
Triple-Modular Redundant password checker with voting, uses
CRYPTO_memcmp - non-standard proof structure, interprocedural

Averill, Buzzetti, Bellon, Hamlen (UTD, UCSD) Lapse February 2026

Solution

Ongoing Work

Implement memory corruption IR transformations, verify
spatially-redundant programs
Survey and simulate fault injection threat models to develop precise
descriptions of their effects on software
Expand evaluation to real-time systems, aerospace applications
Continue to develop automation primitives for fault tolerance proofs

Team Photo Here
https://charles.systems

Averill, Buzzetti, Bellon, Hamlen (UTD, UCSD) Lapse February 2026

https://www.charles.systems/

	Background
	Challenges
	Solution

