Binary Rewriters

Charles Averill (UTD) Binary Rewriters November 2025

Binary Rewriters

Charles Averill (UTD) Binary Rewriters November 2025

Binary Rewriters

Charles Averill (UTD) Binary Rewriters November 2025

Binary Rewriters

Charles Averill (UTD) Binary Rewriters November 2025

Binary Rewriters

Charles Averill (UTD) Binary Rewriters November 2025

Binary Rewriters

Binary rewriters are very cool and have numerous applications in security
and software development.
As you might expect, a rewriter takes in a binary and performs some
transformation on it, resulting in a new binary with (potentially) different
behavior.
Generally, the steps are:

Disassemble the binary

Transform the assembly

Assemble into a new binary

Why? What if | want to ensure that the Office binary | downloaded meets
my own personal security specifications?

Charles Averill (UTD) Binary Rewriters November 2025

Relocation

Charles Averill (UTD) Binary Rewriters November 2025

Relocation

Charles Averill (UTD) Binary Rewriters November 2025

Relocation

Charles Averill (UTD) Binary Rewriters November 2025

Control-Flow Integrity

Control-Flow Integrity is the modern solution to ROP attacks. Basically,
build a whitelist of control-flow graph edges, and before any jump, check
whether the jump is in the whitelist.

valid_targets = build_control_flow_graph(binary)

for instr in binary:
if instr is "Jmp:
insert_before(instr, check_target(instr.target))

function check_target(tgt):

if tgt not in valid_targets[current_function]:
raise_security_exception()

Charles Averill (UTD) Binary Rewriters November 2025

Profiling

Charles Averill (UTD) Binary Rewriters November 2025

https://github.com/CharlesAverill/Picinae/blob/x86_timing_module/timing/amd64/timing_lifter/processors/kaby_lake/extra_tests.c
https://github.com/CharlesAverill/Picinae/blob/x86_timing_module/timing/amd64/timing_lifter/processors/kaby_lake/extra_tests.c

Profiling

Charles Averill (UTD) Binary Rewriters November 2025

https://github.com/CharlesAverill/Picinae/blob/x86_timing_module/timing/amd64/timing_lifter/processors/kaby_lake/extra_tests.c
https://github.com/CharlesAverill/Picinae/blob/x86_timing_module/timing/amd64/timing_lifter/processors/kaby_lake/extra_tests.c

Inlined Reference Monitors

IRMs are chunks of coded injected into binaries to enforce arbitrary
security policies at arbitrary points in execution.
For example, insert the following before any file write operation:

if not write_perms(file):

deny_action("permission denied", context)
goto recovery_path

Sandbox security-critical operations
Memory safety enforcement
Information flow control

Intrusion detection

Charles Averill (UTD) Binary Rewriters November 2025

