
Introduction, Scanning
Lecture #01

Charles Averill

Practical Compiler Design
The University of Texas at Dallas

Spring 2023

Charles Averill (UTD) Introduction, Scanning 1/11



Introduction

Introduction

Welcome to Practical Compiler Design!
Info about me -

3rd-year undergraduate student at UTD
Planning for a PhD in Computer Science - likely PL field
Have been studying compiler design since Fall 2021 - check out Purple,
WIP compiler for a language I’m designing. Also prettybird, a compiler
for a language I submitted to PLDI 2023 (hopefully waiting on
acceptance notification!)

Charles Averill (UTD) Introduction, Scanning 2/11

https://github.com/CharlesAverill/Purple
https://github.com/CharlesAverill/prettybird


Introduction

Course Information

This course is for people passionate about programming and
interested in learning about language design - if you don’t like
programming you will not enjoy this course
This course is not for credit, I am partnering with the CS department
to offer a new certification - ”University of Texas at Dallas
Certification in Compiler Design”
You don’t have to know much to participate in this class, the most
important thing is a mature programming ability. Familiarity with
assembly is very helpful but not necessary. Students should be familiar
with trees and tree descent. Submissions will be done through GitHub
or Gitlab. These topics are covered in the review video I posted

Charles Averill (UTD) Introduction, Scanning 3/11

https://youtu.be/eb3KHRnam-I


Introduction

Passing this Course

This course is built around the completion of a hand-written compiler,
with many concessions given:

You may write the compiler in any language you choose. Please choose
something mainstream so I can grade it. I will not grade your compiler
if it is written in an esoteric language. Ask me if you’re unsure your
desired language is allowed
You may compile any imperative language you choose. As long as it
meets base requirements and your compiler uses the methods we
discuss in class - or sufficiently complicated alternate methods. Turing
machine languages like BF are too simple and not allowed
There are only two submission deadlines - the midterm deadline and
the final deadline. How fast you complete the course is up to you

We cover many topics. A total of 75% of the topics are required to
implement into your compiler to pass. 50% are required topics,
and the remaining 25% must be chosen from the remaining
topics.

Charles Averill (UTD) Introduction, Scanning 4/11

https://esolangs.org/wiki/Category:Brainfuck_equivalents


Introduction

Schedule

This info and more available via the syllabus

Charles Averill (UTD) Introduction, Scanning 5/11

https://www.overleaf.com/read/bzjzmshmcdvq


Introduction

Course Goals

Design a compiler for either a subset of C or an imperative language
of your choice
Implement extra features as optional homework
Learn how common high-level structures such as loops, conditional
statements, functions, and more can be parsed into Abstract Syntax
Trees and mapped to generated LLVM-IR pseudo-assembly code.
Learn how to apply simple optimizations to parsed high-level code
and abstract syntax trees in order to improve generated
pseudo-assembly code
Compare the (relatively) naive approaches presented in this course to
production-level approaches found in compilers like gcc and clang

Charles Averill (UTD) Introduction, Scanning 6/11



Scanning

Starting out

Spend today/tomorrow thinking about what language you want to
compile and what language you want to write the compiler in. I’ll be
doing a C compiler written in Python (C is easy to compile, Python is
easy to write)
Get the project base - https://github.com/CharlesAverill/ecco
If you’re running Linux/Mac (I suggest you do) you can just run this
with python after installing poetry, a package development system. If
using Windows, the project base has a Dockerfile, so use Docker. I
have tested Docker on Linux and it works fine, if it doesn’t for you
then contact me. WSL should work fine
”Why do we have a project base? I thought we were writing
everything from scratch?” - I wanted to remove the complications
of non-compiler-specific related features, like the Python import
system, argument parsing, error handling, etc.

Charles Averill (UTD) Introduction, Scanning 7/11

https://github.com/CharlesAverill/ecco
https://pypi.org/poetry


Scanning

Compiler Architecture

Generally, a compiler is a program that receives a program in the
”source language” as input, then translates that program to a new
program in the ”target language”, reporting errors in the source
program as it encounters them.
Most compilers explicitly follow the ”Analysis-Synthesis Model of
Compilation” (ours will muddy the distinctions a little bit, but still
follow the general idea):

1. Lexical Analysis - scan source program into Tokens, throw error if
encountered a non-token sequence of characters

2. Semantic Analysis - ensure tokenized source program follows syntax
rules of source language, throw error if syntax is not followed

3. Abstract Syntax Tree (AST) generation - parse tokens into a tree that
can be optimized through recursive descent, and manipulated in other
ways

4. Code generation - walk the AST and generate code in the target
language as you do so

Charles Averill (UTD) Introduction, Scanning 8/11



Scanning

Scanning

Another word for Lexical Analysis
We will start out by parsing simple arithmetic expressions with no
operator precedence.
Let’s walk through how our compiler runs, open ecco/ecco.py
(https://github.com/CharlesAverill/ecco/blob/project_base/ecco/ecco.py)
When we call ecco (or ./scripts run) in the terminal, main is the
function that gets called
First, we check command line arguments. In ecco/utils/arguments.py
we can see that PROGRAM (our source file’s filename) is a required argument.
These args get parsed and returned as an object in our main function

Charles Averill (UTD) Introduction, Scanning 9/11

https://github.com/CharlesAverill/ecco/blob/project_base/ecco/ecco.py


Scanning

Scanner class

Back in our main function, we see that we initialize a Scanner object
with our source file’s filename as an argument. If we look in
ecco/scanning/ecco_scanner.py we see that we store the
filename, and also a TextIO object from the standard library
In __enter__ and __exit__ (the functions that allow us to use the
with Scanner(...) as ...: syntax) we handle opening and
closing the source program file. The Scanner class holds onto this file
descriptor so we can do stuff with it. We could scan the entire
program into a string, but that’s resource-intensive for big source
programs
Back in main, we can see that we call the Scanner’s scan_file
method. Let’s take a look at that method.

Charles Averill (UTD) Introduction, Scanning 10/11



Scanning

Scanner class

scan_file will step through every Token in the file (using scan) and
print them out one by one
scan will:

1. Ensure we’re not at the end of the file
2. Compare the first character of each TokenType to the character we’re

currently reading, store any TokenTypes that match
3. If we didn’t find any matches, we can assume that we encountered a

number (unsigned integer, no decimal points or unary negative
operators) rather than an operator. We parse and store this integer
into an INTEGER_LITERAL Token

4. Otherwise, we stored an operator token (or a multiple-character token,
but we won’t worry about that now)

Charles Averill (UTD) Introduction, Scanning 11/11


	Introduction
	Scanning

