
Function Calls and Return Statements
Lecture #09

Charles Averill

Practical Compiler Design
The University of Texas at Dallas

Spring 2023

Charles Averill (UTD) Function Calls and Return Statements 1/13

The Current State of the Compiler

Previously, we added in support for one function declaration into our
language:
void main() {

int x;
x = 5;
print x;

}

Now, let’s put them to use.

Charles Averill (UTD) Function Calls and Return Statements 2/13

The Goal

We’d like to be able to

1. Define multiple functions

2. Call functions

3. Return values from functions

4. Pass a single (temporarily unusable) argument to functions

Charles Averill (UTD) Function Calls and Return Statements 3/13

The LLVM

This is mostly recap, as we’ve generated code like this before. We’re just
generalizing it now.
define dso_local i32 @fred() {

...
; ret <return type> <constant | register>
ret i32 0

}

define dso_local void @main() {
...

; call <return type> <parameter types> @<function name>(<parameters >)
call i32 () @fred()
...
ret void

}

Charles Averill (UTD) Function Calls and Return Statements 4/13

Declaring Multiple Functions

We’ve actually already almost accomplished this in the previous lecture
thanks to the generality of our code generator updates.

Just one small change left: I defined a translate_reinit function that
resets the set of free allocated registers, loaded registers, and next possible
register numbers. This function gets called inside of our function parsing
loop in generate_llvm.

Charles Averill (UTD) Function Calls and Return Statements 5/13

Calling Functions

We’re going to temporarily require that function calls always have one
argument that will go unused. Eventually we’ll work on passing this
argument into the body of the called function, and allowing for more
parameters per function.

We run into an interesting problem when parsing function calls, can
anyone think of why?

Charles Averill (UTD) Function Calls and Return Statements 6/13

Calling Functions

The issue is that function names are identifiers just like variable names.
Therefore, everywhere we dealt with parsing variable name instances
(declarations, assignments, rvalues), we now have to check ahead for a left
parenthesis to see if we’re actually looking at a function call.

Function calls are actually expressions, not statements. So we’ve added a
custom parser inside of parsing/expression.py.

We’re going to require that an identifier has been matched by the time
we’re inside of function_call_expression, but sometimes it’s more
advantageous to not consume the token, so we have an override variable
to bypass this requirement should we need it.

Charles Averill (UTD) Function Calls and Return Statements 7/13

Return Statements

Parsing return statements is pretty straightforward. We’ve added a new
token for the return keyword. We’ll ensure that void functions don’t try
to return expressions, and that non-void functions have to return
expressions.

Charles Averill (UTD) Function Calls and Return Statements 8/13

Return Value Code Generation

Generating return code is pretty easy. We have to do some type checking
to determine whether we’re returning void or some data.

It’s important to realize that ret calls should consume a virtual register
index, clang will whine at you if you don’t increment the counter for those
statements. But you can’t assign return statements to a virtual register.
E.g. %9 = ret void is an illegal statement, but if you don’t increment
the VR count to 9 here, you’ll get a misnumbering error from clang. I
can’t find any documentation on this, weird!

Charles Averill (UTD) Function Calls and Return Statements 9/13

Function Call Code Generation

Our function call code is pretty familiar as well. Do some type checking to
make sure the passed identifier is a function, make sure that you call it
with the right type, and assign it to a virtual register.

Charles Averill (UTD) Function Calls and Return Statements 10/13

Bug Fixes

There are a lot of bug fixes in this update:

Changed all LLVM_LOADED_REGISTERS.append calls to calls to new
function add_loaded_register that’s defined in translate.py.
This prevents loaded registers from one function interfering with the
list of loaded registers in another

Added a recursive call to root.middle in
determine_binary_expression_stack_allocation. For the past few
updates, we haven’t been allocating space for code in those branches!
This is a failure on my part to write proper unit tests

Added a forgotten case in Type.llvm_repr to handle functions that
have non-void return types

Added a new fibonacci unit test to handle some more complex
programs. New class requirement: I want each of you to write and
push 3 complex programs using the current language features

Charles Averill (UTD) Function Calls and Return Statements 11/13

Optional Homework

This week’s optional homework is one of my favorite features in Purple:
N-base integer literals.

In most large languages, you can define literals in base 10 (standard
notation), base 16 (0xABCD), base 2 (0b1001), and base 8 (0o1234).

In Purple, I added the ability to define N-base literals, for N <= 36. The
format specifies that the number literal is followed by a new token, #, and
then a single character, [1-9 |A-Z].

For example, LMNOP#R (base 27) = 11610727 (base 10).

This isn’t a standard C feature, but is a lot of fun and it’s a challenging
parsing problem. Can anyone think of why?

Charles Averill (UTD) Function Calls and Return Statements 12/13

Example N-Base Literal Program
/**
* @file base_test.prp
* @author Charles Averill
* @brief Test number literal declarations
* @date 27-Sep-2022
*/

int main(void) {
int F00F;
F00F = F00F#G;
print F00F; // 61455
print 1001#2; // 9
print 0b1001; // 9
print 1234#8; // 668
print 0o1234; // 668
print f00F#G; // 61455
print 0xf00f; // 61455
print 1234#5; // 194

}

Charles Averill (UTD) Function Calls and Return Statements 13/13

