
Arithmetic and Stack Optimizations
Lecture #11

Charles Averill

Practical Compiler Design
The University of Texas at Dallas

Spring 2023

Charles Averill (UTD) Arithmetic and Stack Optimizations 1/10



The Current State of the Compiler

Previously, we added in support for pointers to our language. This
required a major overhaul of how we handled Numbers and LLVMValues.

Charles Averill (UTD) Arithmetic and Stack Optimizations 2/10



Optimizations

Optimizations are modifications to either parsed ASTs or generated LLVM
that aim to retain identical runtime behavior, but reduce binary size or
increase runtime speed.

Optimizations that deal with ASTs are often recursive (one that we’ll look
at today will be), but often they can be applied as soon as a statement is
parsed (we will look at some of these optimizations later on).

Because we have a recursive AST traversal, we are subject to DFT
complexity, a.k.a. O(V + E). We will see that this greatly increases
compile-time when we compile large files. This compile-time duration
increase is part of why both clang and gcc turn off optimization by
default. We will leave it on, and you will soon see why.

Charles Averill (UTD) Arithmetic and Stack Optimizations 3/10



The Goal

I’ve written a script, test/generate_arithmetic_test.py, that
generates a random file for ECCO to compile. The file contains 500 print
statements, each with 5-10 binary arithmetic operations, and therefore
6-11 integer constants.

Our goal is to minimize the output LLVM generated for this file as much
as possible.

Charles Averill (UTD) Arithmetic and Stack Optimizations 4/10



The Plan

We will implement two optimizations, and slightly update our LLVMValue
interactions to minimize generated code:

1. Arithmetic expression folding

2. Stack allocation reduction

3. New LLVMValueType.CONSTANT to do last-minute or missed
optimizations at the LLVM level

Charles Averill (UTD) Arithmetic and Stack Optimizations 5/10



Arithmetic Expression Folding

If we want to compile the statement print 1 + 2 - 3 * 4 / 5;,
there’s really no good reason why any computations should be performed
at runtime. This expression should have the same value today as it does in
a million years, it doesn’t rely on any variables or configurations of the
compiler. Therefore, we can ”fold” the expression down into its value (1)
at compile-time, so that we don’t waste any time at runtime computing
what is functionally identical to an integer literal.

This works for purely constant sub-expressions as well. print 1 * 2 + x
- 4 / 5; shouldn’t compute 1 · 2 and 4 · 5 at runtime.

Charles Averill (UTD) Arithmetic and Stack Optimizations 6/10



Expression Folding Rules

We’re going to apply 3 sets of folding rules:

1. Any operation between two constants is folded

2. ”Zero” rules (x+ 0 = x, x · 0 = 0, etc.) are folded

3. Any double-operation is folded (x · y · z = (x · y) · z)

Charles Averill (UTD) Arithmetic and Stack Optimizations 7/10



Stack Allocation Reduction

There is no good reason why we should allocate a register on the stack,
store a constant value into that register, load that register’s contents into
a new register, and then use the value. We did this to learn the ins and
outs of basic LLVM pointers, but now we should fix it so that this:
%51 = alloca i32, align 4
%52 = alloca i32, align 4
store i32 0, i32* %52
%53 = load i32, i32* %52
store i32 3, i32* %51
%54 = load i32, i32* %51
%55 = add nsw i32 %53, %54

becomes this:
%51 = add nsw i32 0 3

(ignoring our previous optimization)
Charles Averill (UTD) Arithmetic and Stack Optimizations 8/10



LLVMValueType.CONSTANT

I’ve added an LLVMValueType.CONSTANT type that allows us to
short-circuit a bunch of our redundant stores/loads.

Consequences:

Everywhere we printed a ”%” is now wrapped in a conditional to
check if we’re actually dealing with a register or not

llvm_resize acts solely as a truncate function for constants

A bunch of register loading is now conditional

Charles Averill (UTD) Arithmetic and Stack Optimizations 9/10



Success!

36X line reduction. I’m working on fixing the bug causing the 15x
compile-time increase for O1, but as we can see it currently functions
identically to O2 so we shouldn’t be too worried yet.

Charles Averill (UTD) Arithmetic and Stack Optimizations 10/10


