
Generalizing Leftvalues
Lecture #12

Charles Averill

Practical Compiler Design
The University of Texas at Dallas

Spring 2023

Charles Averill (UTD) Generalizing Leftvalues 1/10

The Current State of the Compiler

In the last lecture we optimized our arithmetic expression generation and
stack allocation generation in order to reduce the overall size of compiled
LLVM files:

Charles Averill (UTD) Generalizing Leftvalues 2/10

What’s Next?

I would really like to add arrays to our language. Unfortunately, there is
some groundwork that we need to set up first:

1. Pointer offsets need to scale, e.g.
(int *x = {0, 1, 2}; x + 1; ⇒ x + 1 should really be x + 8, because
the programmer is most likely trying to grab the second element in
the array, so the offset should be scaled to the width of an int)

2. Leftvalues need to become more dynamic so that we can perform
array accesses and assignments (int x = &y; *x = 5;)

3. Function calls need to be finished up (not really, but I’d like to be
able to call malloc and get rid of our print statement)

We’ll start by making leftvalues more dynamic. Pointer offsets will be
hard to test because LLVM won’t guarantee that our integers will be
next to each other in memory.

Charles Averill (UTD) Generalizing Leftvalues 3/10

The Goal

We want to add support for the following test:
int main() {

int a; int b; int c;
a = b = c = 3;
print a; print b; print c;

int x; int *y;
y = &x; *y = 5;
print x;

int **z; z = &y; **z = 19;
print x;

}

Ideally, this update would also let us do something like
int **q; q = &y; *q = &a; *y = 7; print a;, but a frustrating
bug gets in the way that will be resolved when we add support for
local variables.

Charles Averill (UTD) Generalizing Leftvalues 4/10

The Plan

1. Restructure assignment statements by converting the ASSIGN token
to an operator rather than a keyword

2. Add right associativity to the Pratt parser (assignment is
right-associative)

3. Designate ASTNodes as either lvalues or rvalues

4. Update the code generator to support these new features

Charles Averill (UTD) Generalizing Leftvalues 5/10

Assignment operator

We want the assignment token (=) to act as an operator, rather than a
keyword like it has been up to this point.

That means that we can get rid of our ”Lvalue Identifier” token, as
assignments will now be able to be chained like any other operator. E.g.
in x = y = z = 3;, all of x, y, and z are labeled as Identifier nodes, whereas
previously in x = 3; y = 3; z = 3;, they would all be labeled as Leftvalue
Identifier nodes.

Using assignment as an operator also allows us to generalize what appears
on the left side of the symbol to pointer expressions. Now we will be able
to assign to the value of what a pointer points to, e.g.
int x; int *y;
y = &x; *y = 5; print x; // 5

Charles Averill (UTD) Generalizing Leftvalues 6/10

Assignment operator

Per our plan, I’ve added an is_rvalue field to the ASTNode class that
defaults to False. Although most of the expressions we parse will be
rvalues, we can’t guarantee that something is an rvalue until we look at
the next token in the stream, so we should assume every expression is an
lvalue by default. (If we do the opposite, we have to do some extra tree
traversal after expression parsing to un-rvalue lvalues and that’s messy).

Next, we update our precedence table, and we add a list of
right-associative operators.

Charles Averill (UTD) Generalizing Leftvalues 7/10

Right Associativity

Charles Averill (UTD) Generalizing Leftvalues 8/10

Right-Associative Pratt Parsing

Adding right associativity to our pratt parser is surprisingly easy. All we
have to do is update our loop condition.

Previously, we just checked that our previous token’s precedence was less
than our current token’s precedence. Now, we’ll add a disjunctive case to
check if an operator has the same precedence as the previous token, and is
right-associative. Ta-da! Right associativity added.

Sort of. We need to update a few places to swap the left and right
children and designate nodes as rvalues, but after that we’ve completed
our parsing updates.

Charles Averill (UTD) Generalizing Leftvalues 9/10

Code Generation Updates

There are three cases we need to update in translate.py:

Identifiers - if it’s an rvalue, load it like we did before, otherwise do
nothing

Assignments - if the right child is an Identifier, store it like we used to
do in the Leftvalue Identifier case. If the right child is a dereference,
call our new dereference store function

Dereferences - if it’s an rvalue, dereference like we did before,
otherwise do nothing

Charles Averill (UTD) Generalizing Leftvalues 10/10

