
Function Arguments, Local Variables
Lecture #13

Charles Averill

Practical Compiler Design
The University of Texas at Dallas

Spring 2023

Charles Averill (UTD) Function Arguments, Local Variables 1/13



The Current State of the Compiler

Previously, we updated how we handle leftvalues so that we could do
dereference assignments:

Charles Averill (UTD) Function Arguments, Local Variables 2/13



The Goal

We have put off functions for too long. Let’s finally add support for
function arguments!
int fred(int x) {

print x;
x = x + 1;
print x;
return 20 + x;

}

int bob(int x, int y) {
return x * y;

}

int main() {
// Should print 6, 6, 7, 6, 7, 42, 162
int a; a = 6; print a;
fred(a);
print fred(a) + 15;
print bob(9, 18);

}

Charles Averill (UTD) Function Arguments, Local Variables 3/13



The Plan

FYI: This was the most fun I had adding a feature to the compiler,
primarily due to the deceptive simplicity of the changes we have to make.

1. Convert our global Symbol Table into a stack of local symbol tables
(with the GST on the bottom)

2. Differentiate between local and global variables. For now we will only
have 1 layer of ”local-ness”: variables are either local to subroutines
(funtion arguments) or are globals defined in the function body. We
will differentiate in SymbolTableEntries

3. Generate code using local variables

The reason we’re doing both function args and local variables is that
function args should be local variables. If they were globals we
wouldn’t need args at all.

Charles Averill (UTD) Function Arguments, Local Variables 4/13



Revisiting the Global Symbol Table

We are still going to use our existing SymbolTable code, but now we are
going to use a stack of them to represent scopes. Consider:
int main(int argc, char* argv[]) {

int x = argc;
if (argc == 3) {

char* y = argv[0];
if (y == '/0') {

long z = 5L;
}

}
}

The x, y, and z variables should be in different scopes. If we added a
function outside of main, its variables should be in a different scope.
Scoping prevents the internals of one function/block modifying the
contents of another. Be careful, we still want to be able to access x
from the inside of the second if statement!

Charles Averill (UTD) Function Arguments, Local Variables 5/13



The Symbol Table Stack

Acts like a standard stack (push, pop, peek operations)

Has accessor functions that traverse the stack from the bottom-up to
find SymbolTableEntries and insert/update them in the appropriate
SymbolTables

Will replace most of our GLOBAL_SYMBOL_TABLE accesses (functions
should still be global, and we don’t un-global variables defined in
function bodies yet)

When we start parsing a function body, push a new Symbol Table to
the stack. After we’ve generated code for it, pop that Symbol
Table. Don’t pop it after parsing, we still need to access scope data!

Charles Averill (UTD) Function Arguments, Local Variables 6/13



Function Arguments LLVM

Before we continue, we need to see what our end goal is:
int fred(int x, int y) {

...
}

should become
define i32 fred(i32 %x, i32 %y) {

...
}

(see how nice LLVM is??)

Charles Averill (UTD) Function Arguments, Local Variables 7/13



Ramifications

We actually don’t need to call function args by the names programmers
give them (we could use %0 and %1 in the last example) but I think it adds
to readability and debug-ability. We need to do two things to support this:

1. Allow LLVMValue.VIRTUAL_REGISTERs to use strings as names (easy)

2. Tell our code generator that a value already exists for a given
identifier, and that we don’t need to do any generation (slightly
harder)

Charles Averill (UTD) Function Arguments, Local Variables 8/13



Function argument values already exist

To solve this issue, I propose that:

1. When generting a function preamble, create LLVMValues for each
function argument

2. Assign these LLVMValues to a new field, ”latest_llvmvalue”, in
SymbolTableEntry

3. Any time we need GST variable data, use its latest_llvmvalue if it
exists

Charles Averill (UTD) Function Arguments, Local Variables 9/13



Code Generation

Finally, we need to do some minor updates to our code generator
everywhere we were dealing with printing registers. We replace a bunch of
calls to the GST with the STS. We need to generate code for passing
function arguments. And ta-da! Our example works. We even get
recursion for free!
int recursive_fact(int x) {

if (x <= 0) {
return 1;

}

return x * recursive_fact(x - 1);
}

int main() {
print recursive_fact(5);

}

Charles Averill (UTD) Function Arguments, Local Variables 10/13



One Issue

What will be wrong with the code generated for this function?
int iterative_fact(int x) {

int y;
y = x - 1;

while (y > 0) {
x = x * y;
y = y - 1;

}

return x;
}

(Hint: assignment to x)

Charles Averill (UTD) Function Arguments, Local Variables 11/13



One Issue

The generated LLVM:
define dso_local i32 @iterative_fact(i32 %x) #0 {

%1 = sub nsw i32 %x, 1
store i32 %1, i32* @y
br label %L1
L1:
%2 = load i32, i32* @y
%3 = icmp sgt i32 %2, 0
br i1 %3, label %L3, label %L2
L3:
%4 = load i32, i32* @y
%5 = mul nsw i32 %x, %4
%6 = load i32, i32* @y
%7 = sub nsw i32 %6, 1
store i32 %7, i32* @y
br label %L1
L2:
ret i32 %5
ret i32 0

}

Charles Averill (UTD) Function Arguments, Local Variables 12/13



One Issue

The x assignment tries to use %x every time! But VRs are static, so it gets
the same value every time. In a future lecture, we will fix this by allocating
stack space and storing into it, similar to how we store into global
variables.

However, this isn’t necessary! Still Turing complete if our function args are
read-only, and plenty of languages have readonly function arguments
(mostly functional languages though).

Charles Averill (UTD) Function Arguments, Local Variables 13/13


