
Finishing Local Variables
Lecture #14

Charles Averill

Practical Compiler Design
The University of Texas at Dallas

Spring 2023

Charles Averill (UTD) Finishing Local Variables 1/8



The Current State of the Compiler

We added support for usable function arguments in the last lecture. We
had an issue however: assigning to those variables was not functional!

Charles Averill (UTD) Finishing Local Variables 2/8



An Overview of the Issue

LLVM gives us function headers with parameters for free. The only issues
is that those parameters come as virtual registers, which we know are
immutable.

Therefore, this code would end up printing ”5”, even though an equivalent
C program should print ”10”:
int fred(int x) {

x = x + 5;
return x;

}

int main() {
print fred(5);

}

Charles Averill (UTD) Finishing Local Variables 3/8



The Solution

This is not an unsolvable problem. In fact, it has a solution that we should
be fairly comfortable with: when we generate the function preamble, also
generate alloc and store statements to immediately copy the data from
those virtual registers into stack pointers:
int bob(int x, int y) {

...
}

define dso_local i32 @bob(i32 %0, i32 %1) #0 {
%x = alloca i32, align 8
store i32 %0, i32* %x
%y = alloca i32, align 8
store i32 %1, i32* %y
; ...

}

Charles Averill (UTD) Finishing Local Variables 4/8



While We’re At It

While we’re fixing function parameters, it makes sense to add support for
non-global variables as well.

We can’t yet support scopes yet due to how we’ve structured the
relationship between the parser and generator, but we will at least have
variables local to their respective functions.

Charles Averill (UTD) Finishing Local Variables 5/8



Fixing Parameters

The meat of the solution here is in llvm_function_preamble. Allocating
space on the stack is no issue, we’ve done that before.

However, to store into this new stack space, we have to make our
llvm_store_local a bit more complicated. We now allow the passing of
LLVMValues into this function rather than just SymbolTableEntries. This
is going to signify that we want to actually store data into that variable,
rather than just updating the latest value that variable contains.

Hopefully you should see how this development leads into local variables as
a whole!

Charles Averill (UTD) Finishing Local Variables 6/8



Local Variables

The first big change we’re making is in the parser for declaration
statements: I’ve added a new TokenType called ”VAR_DECL”. Remember
that previously, global variables would be generated into a separate file
because the order of generation was getting complicated.

When our generator encounters VAR_DECL tokens, it’s going to call the
new llvm_declare_local function for us. This allocates stack memory
for the variable, allowing us local access to a rewritable data space.

At this point, we’ve essentially replaced all of our dealings with global
variables. This has an interesting side effect: all of our dereference
operations now have to be called twice. This also fixes the issues with
dereference assignment we had earlier.

Charles Averill (UTD) Finishing Local Variables 7/8



Bug Fixes

1. ensure_registers_loaded actually loads to load_level now

2. Function calls load their arguments to the pointer depth expected

3. Comparisons load their operands to the smaller pointer depth of the
two

Charles Averill (UTD) Finishing Local Variables 8/8


