
Arrays
Lecture #15

Charles Averill

Practical Compiler Design
The University of Texas at Dallas

Spring 2023

Charles Averill (UTD) Arrays 1/9



The Current State of the Compiler

Previously, we added support for variables that are local to function scopes
(but not other scopes):

Charles Averill (UTD) Arrays 2/9



Arrays

This update has been a long time coming. Today, we will add support for
statically-allocated arrays, and parentheses in expressions along the way:
int main() {

int a[10];
int i;
int x;

for(i = 0; i < 10; i = i + 1) {
a[i] = 2 * i;
x = a[i];

printint(i);
printint(x);

}

printint(a[8] = 2 * (3 + 5));
printint(a[8]);

}

Charles Averill (UTD) Arrays 3/9



Arrays in LLVM

Unlike real assembly, LLVM has a dedicated ”array” data type

Downside: We have to account for this

Upside: Way more secure (clang will catch when our users try to do
weird stuff)

; int a[10];
%a = alloca [10 x i32], align 4
; a[i] = 99;
%5 = load i32, i32* %i
%6 = zext i32 %5 to i64
%7 = getelementptr inbounds [10 x i32], [10 x i32]* %a, i64 0, i64 %6
store i32 99, i32* %7
; a[i]
%9 = load i32, i32* %7

Charles Averill (UTD) Arrays 4/9



ACWJ’s Array Approach

ACWJ treats arrays as pointers, and vice versa. Therefore, array accesses
with bracket notation are essentially just a parsing problem
(array[i] = *(&array + i)).

Nice because we can reuse our existing addressing and dereferencing
code

Nice because it automatically treats arrays like pointers

Not nice because it isn’t conducive to LLVM’s array representation

Charles Averill (UTD) Arrays 5/9



ECCO’s Array Approach

We will treat arrays as their own data type, not pointers to their root data
type. Additionally, we will define a new meta-TokenType for array accesses.

Nice because it’s conducive to LLVM’s array representation, therefore
we implicitly get the security of LLVM

Sort of nice that we can reuse some of our addressing and
dereferencing code, but still requires custom logic

Not nice because we can’t treat arrays as pointers at all unless we
extend our implementation later

Charles Averill (UTD) Arrays 6/9



The Plan

Update our expression parser to respect parentheses

Create a new Array type in addition to Number and Function

Add parsing, generation for array declarations

Add parsing, generation for array accesses (doubles as parsing for
array assignments thanks to our lvalue revitalization)

Update the LLVMValue class to distinguish array and number values
stored in virtual registers

In the meantime, condense LLVMValue representations so we don’t
have so much code reuse in llvm.py

Add the long type, as all array access offsets are i64s

Charles Averill (UTD) Arrays 7/9



Parentheses

This is a super easy update: when we parse a terminal token, if we see a
left parenthesis, parse a binary expression, then match a right parenthesis.
That’s it!

I’ve also updated the arithmetic tester so that it uses parentheses, as well
as the division operator that we left out earlier.

Charles Averill (UTD) Arrays 8/9



Array Type

The Array type will keep track of an array’s storage type, array length,
contents (currently unused), and dimension (currently unused).

Additionally, LLVMValue now takes in an optional Array object to handle
its LLVM representation.

Charles Averill (UTD) Arrays 9/9


