
Prison Snake
A broad dive into the object structure of Python and the functionality

behind PyJail solutions

Charles Averill

Computer Security Group
The University of Texas at Dallas

February 2022

Charles Averill (UTD) Prison Snake February 2022



What is a PyJail?

A common CTF problem in which a Python interpreter with limited
functionality is provided to the user
Goal is typically to call os.system(), open(), or another similar
function that provides access to file-reading abilities
Common restrictions involve removing keywords such as import,
blocking any input containing the text open, preventing any function
calls outside of print, etc.
As a result of these limitations, solutions usually look something like
().__class__.__base__.__subclasses__()[134].__init__.__globals__[”__builtins__”][”open”](”./key”, ”r”).read()

This is crazy! The solution seems arbitrary but there is logic behind
each attribute chosen in this solution. We will discover why solutions
like this work, and why this functionality exists.

Charles Averill (UTD) Prison Snake February 2022



What is CPython?

The official reference implementation of the Python programming
language
Written in a combo of C and Python
Compiles Python to bytecode (.pyc files) to be interpreted later, so
technically a compiler and interpreter

.pyc files are (mostly) CPython-specific. Other Python compilers
generate other formats (Jython generates .class files, Cython generates
C files that are compiled to binaries, etc)

Defines lots of hooks and handles available from the Python
interpreter to access CPython types and structs and such
Contains implementations of builtin functions, mostly written in C for
speed

Charles Averill (UTD) Prison Snake February 2022



Python Object Characteristics

Files : Linux :: Objects : Python (Everything in Python is an Object)
Objects, Instances, and Classes have the following attributes:

object.__dict__: Dictionary containing writable attributes of an
Object definition
instance.__class__: The Class an instance belongs to
class.__bases__: Tuple containing base classes of an object
class.__mro__: Tuple containing possible base Classes (usually
contains base Classes and the Class itself)
class.__subclasses__(): List containing any subclasses derived
from the Class

Why should anyone care?
These are the building blocks of a PyJail solution, and the
architecture of the language itself. Having a deep understanding of
these attributes will always guide you to the solution.

Charles Averill (UTD) Prison Snake February 2022



The Object Class, __globals__

The base Class of all Classes excluding itself (Object has no base
Class)
The Object class has a few defined functions, but they are special
method-wrappers
method-wrapper is a type used by CPython to denote a function
that is compiled with C. This makes sense for a base component of
Python such as Object.
Conclusion? We can’t use Object on its own to help us call other
functions

Charles Averill (UTD) Prison Snake February 2022



The Object Class, __globals__

Recall that Classes can utilize __subclasses__() to get a list of
Classes derived from them.
Object class has all Classes as subclasses (This terminology makes my
head hurt)
__globals__: Global attributes accessible within any valid Python
scope (hint: methods of classes are valid Python scopes)

__builtins__: Functions written in either C or Python that are
built-in to the language, and accessible through the global scope
These builtin functions include open() (the simplest way to open a file)
They also include other useful things like __import__() which are
good for PyJails with other restrictions
In my installation of Python 3.10, there are 544 classes with
Python-implemented methods (so they have __globals__ as a derived
attribute)

Charles Averill (UTD) Prison Snake February 2022



Graphical Review

Charles Averill (UTD) Prison Snake February 2022



Solving our PyJail

We looked at this PyJail solution at the beginning:
().__class__.__base__.__subclasses__()[134].__init__.__globals__[”__builtins__”][”open”](”./key”, ”r”).read()

Let’s decode this solution
().__class__.__base__: Creates a blank Tuple object, accesses its
class (Tuple) and then Tuple’s sole base class (Object)
__subclasses__()[134].__init__.__globals__: Accesses the
134th subclass of the Object class (in my installation, this is the
Printer class), uses its Python-defined __init__ function to access
the global scope
["__builtins__"]["open"]("./key", "r").read(): Accesses
Python’s list of builtin function headers, calls the open function on a
file called ”key” with the read permissions, and reads its contents

Charles Averill (UTD) Prison Snake February 2022



Why does Python work like this?

OOP Junk
If you’re calling __subclasses__() or directly referencing
__globals__ your code is probably hard to read and/or vulnerable to
issues with scaling
Reflective programming - the ability of objects to modify their behavior
or structure under different contexts (last resort)
Look at this list of reflection use-cases to see why it shouldn’t be used
very often

Debugging OOP Junk

Charles Averill (UTD) Prison Snake February 2022

https://dev.to/designpuddle/coding-concepts---reflection-4d2c#:~:text=When%20to%20use%20reflection%20and%20why!


Sources

Your Guide to the CPython Source Code
CPython Source Code
Common Python Structures
Python Data Model
Python’s Innards

Charles Averill (UTD) Prison Snake February 2022

https://realpython.com/cpython-source-code-guide/
https://github.com/python/cpython
https://docs.python.org/3/c-api/structures.html
https://docs.python.org/3/reference/datamodel.html
https://tech.blog.aknin.name/category/my-projects/pythons-innards/


Challenge

https://gist.github.com/CharlesAverill/e7fef5a6e078f14b7ac7b3d318e3e24f

Charles Averill (UTD) Prison Snake February 2022

https://gist.github.com/CharlesAverill/e7fef5a6e078f14b7ac7b3d318e3e24f

