
Formal Program Verification
Rigorous Proof of Program Correctness and Security

Charles Averill

Computer Security Group
The University of Texas at Dallas

Saturday, 25 March, 2023

Charles Averill (UTD) Formal Program Verification Saturday, 25 March, 2023



Who am I?

20 years old
Undergraduate CS, Physics senior at
University of Texas at Dallas
Researching formal binary verification with
Dr. Kevin Hamlen
Studying quantum mechanics for my
physics degree
Officer of UTD Computer Security Group
Applying to PL Ph.D. programs in Fall 2023
Teaching a Practical Compiler Design
course this semester:
https://www.charles.systems/PCD
My dog’s name is Beth

Charles Averill (UTD) Formal Program Verification Saturday, 25 March, 2023

https://www.charles.systems/PCD


Outline I
1 What is ”Verifying a Program”?

Correctness

Security

Verification

2 How are Programming Languages Defined?

Grammars

Semantics

Large-Step Operational Semantics
Stores

Judgements

Derivations

Charles Averill (UTD) Formal Program Verification Saturday, 25 March, 2023



Outline II

3 What can we Prove about Programs?

Routine Equivalence

4 Proving a Program’s Security

Simulating a Memory Architecture

The Proof

5 Complex Programs

Charles Averill (UTD) Formal Program Verification Saturday, 25 March, 2023



What is ”Verifying a Program”?

What is ”Verifying a Program”?

When we write code, we generally aim to induce some well-defined
behavior in our computer. This behavior could be very simple:

f(x, y) = x+ y,

or it could be very complex:

iℏ
d

dt
〈Ψ(t)|Ψ(t)〉 = Ĥ 〈Ψ(t)|Ψ(t)〉 .

Regardless of the complexity of our programs, we typically want to ensure
that they return the correct answer, and that they have no insecurities.

Charles Averill (UTD) Formal Program Verification Saturday, 25 March, 2023



What is ”Verifying a Program”? Correctness

Program Correctness

We like our programs to be ”correct”. This means that they should return
an answer in a form that we expect, no matter what (valid) input we give
them.

The following addition routines in C are incorrect and correct, respectively,
according to the standard definition of (modular) addition:�
1 unsigned int add_incorrect(unsigned int x, unsigned int y) {
2 return x + y + 1;
3 }
4
5 unsigned int add_correct(unsigned int x, unsigned int y) {
6 return x + y;
7 }
� �

⊕(x, y, z) = (x+ y) mod z

z = 28·sizeof(int) = 232

Charles Averill (UTD) Formal Program Verification Saturday, 25 March, 2023



What is ”Verifying a Program”? Security

Program Security

We also like our programs to be ”secure”. This is a much more nebulous
definition, but you will hear programmers claim that secure programs do
not have ”side effects”. Side effects can arise from a large number of
programmer errors, such as:

1. Out-of-Bounds Write (CWE-787)

2. Cross-Site Scripting (CWE-79)

3. SQL Injection (CWE-89)

4. ... There are ~600 more of these

The majority of these vulnerabilities exist solely due to poor input
validation. A large part of program verification is ensuring that it properly
handles input validation so that these vulnerabilities won’t happen.

Charles Averill (UTD) Formal Program Verification Saturday, 25 March, 2023

https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/89.html


What is ”Verifying a Program”? Security

Program Security Examples

The following routines are insecure because they do not validate their
inputs:�
1 int add_pointer_contents(int *x, int *y) {
2 // What if x or y are a null pointer?
3 // Dereferencing those causes segmentation faults
4 return *x + *y;
5 }
6
7 int get_100th_element(int arr[]) {
8 // What if len(arr) < 100? We'll be accessing
9 // memory that we aren't supposed to

10 return arr[99];
11 }
� �

Charles Averill (UTD) Formal Program Verification Saturday, 25 March, 2023



What is ”Verifying a Program”? Security

Program Security Examples

Here are (more) secure variants:�
1 int add_pointer_contents(int *x, int *y) {
2 // Still not very secure! What if somebody passes in
3 // garbage/freed pointers?
4 // There's really no easy way to tell! This is one reason
5 // why C is such an unsafe language
6 if (x == NULL || y == NULL) return 0;
7
8 return *x + *y;
9 }

10
11 int get_100th_element(int arr[], int default) {
12 if (sizeof(arr) / sizeof(arr[0]) <= 100) {
13 return default;
14 }
15
16 return arr[99];
17 }
� �

Charles Averill (UTD) Formal Program Verification Saturday, 25 March, 2023



What is ”Verifying a Program”? Verification

Verification

Generally, correctness and security go hand in hand. If your code is not
correct, it could return incorrect results to computations, propagating
logical errors throughout your code. If your code is not secure, there is no
guarantee that other activity on the host machine, regardless of intention,
will not interfere with your routines.

Program ”verification” is the process of ensuring that code is both correct
and secure according to provided specifications of the intended behavior of
the program, as well as fundamental rules of logic.

Charles Averill (UTD) Formal Program Verification Saturday, 25 March, 2023



What is ”Verifying a Program”? Verification

Proof Assistants

Verification can be achieved in many ways, but often is performed through
the use of proof assistants: programming languages that use fundamental
logic to confirm whether mathematical statements are true or not (more
on this later).

Charles Averill (UTD) Formal Program Verification Saturday, 25 March, 2023



How are Programming Languages Defined? Grammars

How are Programming Languages Defined?

Depending on how much you’ve studied CS, you might have come across
language ”grammars”, which describe what kinds of statements and
expressions can exist within a program of a specific language. Consider the
following grammar:

Syntax of the SIMPL Programming Language
commands c ::= skip | c1;c2 | v := a|if b then c1 else c2 | while b do c

boolean expressions b ::= true | false | a1 <= a2 | b1 and b2 | b1 or b2 | ! b1

arithmetic expressions a ::= n | v | a1 + a2 | a1 - a2 | a1 * a2

Language grammars are nice, but they only tell us what a language looks
like, not what it does.

Let’s add this arithmetic expression to the grammar: a1 ⊨ a2

We know what it looks like, but what is it supposed to do?

Charles Averill (UTD) Formal Program Verification Saturday, 25 March, 2023



How are Programming Languages Defined? Semantics

Semantics

This is where semantics steps in. A language semantics defines how
certain statements in the language ”act”. There are a few ways to define
language semantics:

1. Large-step operational semantics (what we’ll look at)

2. Small-step operational semantics

3. Denotation semantics

Charles Averill (UTD) Formal Program Verification Saturday, 25 March, 2023



How are Programming Languages Defined? Large-Step Operational Semantics

Stores

The first fundamental concept to semantics is that of a store, or a
relational mapping from variable names to variable values (in this case).
Stores are intended to model a machine state (like a program’s memory).

You can imagine stores like a dictionary in Python; they can be read from
and assigned to:�
1 store: Dict[str, int] = {}
2
3 store["sum"] = 0
4
5 for i in [5, 6, 7, 8, 9]:
6 store["sum"] += i
7
8 print(store["sum"])
� �

Charles Averill (UTD) Formal Program Verification Saturday, 25 March, 2023



How are Programming Languages Defined? Large-Step Operational Semantics

Judgements

The second fundamental concept to semantics is that of a judgement. A
judgement is a function that takes in an object from our grammar and
returns either a new store or a value. These objects can be commands,
expressions, etc.�
1 def arith(expr, store) -> int:
2 match expr:
3 case SIMPL_CONST(n):
4 return n
5 case SIMPL_VAR(v):
6 return store[v]
7 case SIMPL_ADD(a1, a2):
8 return arith(a1, store) + arith(a2, store)
9 case SIMPL_SUB(a1, a2):

10 return arith(a1, store) - arith(a2, store)
11 case SIMPL_MUL(a1, a2):
12 return arith(a1, store) * arith(a2, store)
� �

Charles Averill (UTD) Formal Program Verification Saturday, 25 March, 2023



How are Programming Languages Defined? Large-Step Operational Semantics

Judgements

We can write judgements another way: 〈a1 + a2, σ〉 ⇓ n. We have similar
judgements for the boolean expression values.

Command judgements converge to stores rather than values:

〈if x <= 3 then x := x + 1 else skip, σ〉 ⇓ σ′

We’ve defined how arithmetic and boolean expressions can be ”evaluated”
(they converge to a value), but we have not done the same for commands.
To define the behavior of commands, we need derivations.

Charles Averill (UTD) Formal Program Verification Saturday, 25 March, 2023



How are Programming Languages Defined? Large-Step Operational Semantics

Derivations

Judgements are like mathematical propositions (e.g. ”prime numbers have
a maximum of 2 divisors” or ”all odd numbers end in 5”), statements that
are not necessarily true or false.

Derivations are proofs of those propositions. We represent proofs like this:

P P ⇒ Q

Q
,

read as ”If P is true, and P implies Q, then Q is true” (the law of Modus
Ponens).

Here, Q is what we want to prove (the goal), so it goes on the bottom.
P and P ⇒ Q are ”hypotheses”, statements that must be true if the goal
is to be true.

Charles Averill (UTD) Formal Program Verification Saturday, 25 March, 2023



How are Programming Languages Defined? Large-Step Operational Semantics

SIMPL Axioms

We need to define axioms (definitionally-true derivations) for SIMPL so
that we can rigorously define how the language should operate.

Consider the following SIMPL axioms:

1. ”skip does not modify the program store”

〈skip, σ〉 ⇓ σ

2. ”Assignment statements update the program store with the value that
a converges to”

〈a, σ〉 ⇓ n

〈v := a, σ〉 ⇓ σ[v 7→ n]

There are more of these for the rest of the language,
but we won’t get into them.

Charles Averill (UTD) Formal Program Verification Saturday, 25 March, 2023



How are Programming Languages Defined? Large-Step Operational Semantics

Derivations

We can now use these axioms to determine the results of computations!
Consider the following SIMPL program: x := 5 * 25. Let’s look at its
derivation using the assignment rule:

〈a, σ〉 ⇓ n

〈v := a, σ〉 ⇓ σ[v 7→ n]

〈a, σ〉 ⇓ n

〈x := a, σ〉 ⇓ σ[x 7→ n]

〈5 ∗ 25, σ〉 ⇓ n

〈x := 5 ∗ 25, σ〉 ⇓ σ[x 7→ n]

〈5 ∗ 25, σ〉 ⇓ 125

〈x := 5 ∗ 25, σ〉 ⇓ σ[x 7→ 125]

The derivation has converged to a new σ, and we have that σ(x) = 125!
This was a tiny program, but the same process allows us to compute the
resulting stores of programs with conditional statements, loops, recursion,
and more.

Charles Averill (UTD) Formal Program Verification Saturday, 25 March, 2023



How are Programming Languages Defined? Large-Step Operational Semantics

So What?

We could already execute programs, this is nothing new. So why does it
matter?

It matters because the act of executing a program is identical to the act of
solving a mathematical proof by searching through a hypothesis space.

This provides us with access to thousands of years of study on
mathematics and logic to formulate ideas about programs with! We can
use these mathematical tools to prove all sorts of things about programs,
notably their correctness and security.

Charles Averill (UTD) Formal Program Verification Saturday, 25 March, 2023



What can we Prove about Programs?

What can we Prove about Programs?

Consider these two functions:�
1 unsigned int double_int(unsigned int n) {
2 return 2 * n;
3 }
4
5 unsigned int mystery_function(unsigned int n) {
6 if (n != 0) return 2 + mystery_function(n - 1);
7 return 0;
8 }
� �
What is special about the relationship between these two functions?

mystery_function(0) = 0, mystery_function(3) = 6, mystery_function(7) = 14 ...

They look like they should perform the same function! But how do we test
that? We could write unit tests... but there are a lot of unsigned
integers! How can we know the outputs of these functions are the
same for ALL inputs?

Charles Averill (UTD) Formal Program Verification Saturday, 25 March, 2023



What can we Prove about Programs? Routine Equivalence

Coq Example

Coq is a proof assistant language. I’ll convert our functions in question to
its builtin functional programming language, Gallina. I get:�
1 Definition double_simple (n : nat) : nat :=
2 2 * n.
3
4 Fixpoint double_recursive (n : nat) : nat :=
5 match n with
6 | O ⇒ 0
7 | S n' ⇒ 2 + double_recursive n'
8 end.
� �

(Sn′ = n′ + 1)

Let’s step through a simple proof of these routines’ equivalence.

Charles Averill (UTD) Formal Program Verification Saturday, 25 March, 2023



What can we Prove about Programs? Routine Equivalence

Double Routines Equivalence�
1 Theorem double_simple_recursive_equivalence : forall (n : nat),
2 double_simple n = double_recursive n.
3 Proof.
4 intros. induction n as [| n' IHn' ].
5 − (* n = 0 *)
6 unfold double_simple. simpl. reflexivity.
7 − (* n = n' + 1 *)
8 simpl. rewrite ← IHn'.
9 unfold double_simple. rewrite ← mult_n_Sm.

10 assert (S (2 ∗ n') = 2 ∗ n' + 1).
11 rewrite Nat.add_1_r. reflexivity.
12 rewrite H. symmetry. trivial.
13 Qed.
� �

Charles Averill (UTD) Formal Program Verification Saturday, 25 March, 2023



What can we Prove about Programs? Routine Equivalence

Double Routines Equivalence

We’ve just proven that our recursive doubling algorithm always returns two
times its input. We formulated this theorem by writing another algorithm
to do the ”simple” doubling, but we are not just limited to comparing the
equality of program outputs given their inputs.

Using similar proof techniques, we can determine if a list-traversal
algorithm ever touches certain items in the list, or how optimal a BST
traversal algorithm is, or whether or not a function that accesses array
memory ever tries to access out-of-bounds data.

The possibilities are (kind of) endless!

Charles Averill (UTD) Formal Program Verification Saturday, 25 March, 2023



Proving a Program’s Security

Proving a Program’s Security

We’ve just proven the correctness of a program. But, it wasn’t just any
program, it was a program that was written in a language used to prove
things.

That’s a bit unfair! It also brings up the question: how is this method
applicable to the real world? Is this just an academic curiosity?

It isn’t! Let’s get closer to proving something that seems like a program.

Charles Averill (UTD) Formal Program Verification Saturday, 25 March, 2023



Proving a Program’s Security Simulating a Memory Architecture

Functional -> Imperative

Our doubling routines were written in Gallina, a functional programming
language.

FPLs abstract things like memory, clock cycles, etc. that are very familiar
in the Von Neumann architecture (what all of our computers use).
Therefore, to get closer to a ”normal” imperative program, we will start by
simulating a simple memory architecture.

Charles Averill (UTD) Formal Program Verification Saturday, 25 March, 2023



Proving a Program’s Security Simulating a Memory Architecture

Simulating a Memory Architecture

Code is available here if you’d like to follow along on your own machine:
https://gist.github.com/CharlesAverill/766c48a417aa7fec35168a26d1dc5546#file-

formal_program_verification_examples-v-L44

General idea:

We have a Memory Space that simulates all memory in a machine
(think of RAM). Each place in the Memory Space is a pair (address,
byte contents).

We have Arrays. Arrays are attached to a Memory Space, have a
starting address, and have a length.

We have functions to read and write bytes directly from a MS. We
also have some functions to read/write sequences of bytes
from/to a MS that just use the raw IO functions multiple times.

Charles Averill (UTD) Formal Program Verification Saturday, 25 March, 2023

https://gist.github.com/CharlesAverill/766c48a417aa7fec35168a26d1dc5546#file-formal_program_verification_examples-v-L44
https://gist.github.com/CharlesAverill/766c48a417aa7fec35168a26d1dc5546#file-formal_program_verification_examples-v-L44


Proving a Program’s Security The Proof

The Theorem

Now comes the hard part. This is the theorem we want to prove:�
1 in_arr_bounds
2 (fst (array_access_safe arr access_position)) arr.
� �

We’ve abstracted the idea of ”array bounds” and ”memory addresses”
from mathematical concepts, so this is a mathematical proposition like any
other. We want to prove that this statement is true.

There are some qualifiers we need to add to the theorem first, however.

Charles Averill (UTD) Formal Program Verification Saturday, 25 March, 2023



Proving a Program’s Security The Proof

Hypothesis Space

1. Memory space is non-empty (0 < space_size)

2. Array is non-empty (0 < arr_size)

3. Array starts within the bounds of the memory space
(0 <= arr_address + arr_size < space_size)

4. Arrays cannot be longer than the distance between their address and
the end of the memory space
(arr_size <= space_size - arr_addr)

5. The indices of the memory space are well-ordered
(start at 0 and strictly increase)

We assume all of these things to be true when we’re writing the proof. We
don’t care about size-0 RAM, that doesn’t really make any sense.

Charles Averill (UTD) Formal Program Verification Saturday, 25 March, 2023



Proving a Program’s Security The Proof

The Plan

To prove this statement, we need to use some induction. The general idea
behind induction is that if I can prove a quality of numbers is true when:

1. The number is 0,

2. The number is some other number plus one,

then I have proved that the quality is true for all natural numbers
(n = 0, 1, 2, . . . ).

Charles Averill (UTD) Formal Program Verification Saturday, 25 March, 2023



Proving a Program’s Security The Proof

Execution

I won’t be covering the actual proof, because it’s pretty long. But we’re
going to prove the safety of our array access by an induction over the
access position. So, if we prove that the array access is secure and correct
when:

1. We’re accessing the 0th element of the array,

2. We’re accessing the (n+ 1)th element of the array, for an arbitrary n,

then we have proven that the array access is secure and correct for all of
the quantifiers we listed in the hypothesis space: all memory spaces, all
arrays in those memory spaces, and all access positions of those arrays.

Charles Averill (UTD) Formal Program Verification Saturday, 25 March, 2023



Proving a Program’s Security The Proof

The Challenges

Think of what we just (almost) proved: that one single byte read
operation doesn’t go out of bounds. We didn’t even prove write security,
much less the security of a more complicated operation, like computing
the length of a string.

The current biggest challenge that comes with formal program verification
is the difficulty of such proofs. We can add more preconditions to the
hypothesis space, but in doing so we reduce the generality of our proofs,
so they only verify specific instances of a program.

Another challenge is how to represent a more complex memory
architecture, or even worse, a CPU with multiple instructions, pipelining,
etc.

Charles Averill (UTD) Formal Program Verification Saturday, 25 March, 2023



Complex Programs

Complex Programs

The proof for single-byte reads was huge. Imagine the size of a proof for
fibonacci number computations (a fairly simple algorithm that many
people write at the beginning of their CS journeys).

Now consider trying to prove the amount of code reuse that would occur
from trying to prove the correctness of a fibonacci x86 binary after proving
the correctness of a fibonacci ARM binary.

It quickly becomes evident that we need some tool to write these proofs,
to help minimize the workload of the verifier. Enter PICINÆ, ”an
infrastructure for machine-proving properties of raw native code programs
without sources within the Coq program-proof co-development system.”

Charles Averill (UTD) Formal Program Verification Saturday, 25 March, 2023



Complex Programs

PICINÆ

PICINÆ is being developed by the team led by my boss, Dr. Kevin
Hamlen. Formal program verification has existed in various forms for
decades, but primarily at the source level (before compilation).
Unfortunately, many of the languages we use are built on top of C, an
inherently unsafe language.

The solution? Verify programs at the binary level rather than the source
level. All programs get executed as binaries in some form or another
anyways, so going from the bottom-up is a more robust approach to
formal verification.

I can’t show any example proofs using the framework, but they’re much
longer than my attempt at the byte read operation. It’s a work in progress
though! Our goal is to make verification of binary programs much
easier over time, so that it doesn’t require a research team to verify
software at the lowest level.

Charles Averill (UTD) Formal Program Verification Saturday, 25 March, 2023



Complex Programs

Questions?

Charles Averill (UTD) Formal Program Verification Saturday, 25 March, 2023


	What is "Verifying a Program"?
	Correctness
	Security
	Verification

	How are Programming Languages Defined?
	Grammars
	Semantics
	Large-Step Operational Semantics

	What can we Prove about Programs?
	Routine Equivalence

	Proving a Program's Security
	Simulating a Memory Architecture
	The Proof

	Complex Programs

