
Secrets of the Universe
The Ultimate Formal Verification Talk

Charles Averill

UTD Computer Security Group
The University of Texas at Dallas

Fall 2024

Charles Averill (UTD) Secrets of the Universe Fall 2024

The Philosophy of Uncertainty
“The only true wisdom is in knowing you know nothing.” - Socrates

The Philosophy of Uncertainty

What do we know?

Start simple, things like:

3 + 4 = 6 + 1

red + blue = purple

The sky is blue

Maybe we know simple algebraic relations:

If y = 0, then x + y = x

0 < n ⇒
√
n2 = n

Maybe we’ve even studied some more complex things:

Supply-Demand curves

Human Psychology

General Relativity

Charles Averill (UTD) Secrets of the Universe Fall 2024

The Philosophy of Uncertainty

What do we know?

Start simple, things like:
3 + 4 = 6 + 1

red + blue = purple

The sky is blue

Maybe we know simple algebraic relations:

If y = 0, then x + y = x

0 < n ⇒
√
n2 = n

Maybe we’ve even studied some more complex things:

Supply-Demand curves

Human Psychology

General Relativity

Charles Averill (UTD) Secrets of the Universe Fall 2024

The Philosophy of Uncertainty

What do we know?

Start simple, things like:
3 + 4 = 6 + 1

red + blue = purple

The sky is blue

Maybe we know simple algebraic relations:

If y = 0, then x + y = x

0 < n ⇒
√
n2 = n

Maybe we’ve even studied some more complex things:

Supply-Demand curves

Human Psychology

General Relativity

Charles Averill (UTD) Secrets of the Universe Fall 2024

The Philosophy of Uncertainty

What do we know?

Start simple, things like:
3 + 4 = 6 + 1

red + blue = purple

The sky is blue

Maybe we know simple algebraic relations:

If y = 0, then x + y = x

0 < n ⇒
√
n2 = n

Maybe we’ve even studied some more complex things:

Supply-Demand curves

Human Psychology

General Relativity

Charles Averill (UTD) Secrets of the Universe Fall 2024

The Philosophy of Uncertainty

What do we know?

Start simple, things like:
3 + 4 = 6 + 1

red + blue = purple

The sky is blue

Maybe we know simple algebraic relations:

If y = 0, then x + y = x

0 < n ⇒
√
n2 = n

Maybe we’ve even studied some more complex things:

Supply-Demand curves

Human Psychology

General Relativity

Charles Averill (UTD) Secrets of the Universe Fall 2024

The Philosophy of Uncertainty

What do we know?

Start simple, things like:
3 + 4 = 6 + 1

red + blue = purple

The sky is blue

Maybe we know simple algebraic relations:
If y = 0, then x + y = x

0 < n ⇒
√
n2 = n

Maybe we’ve even studied some more complex things:

Supply-Demand curves

Human Psychology

General Relativity

Charles Averill (UTD) Secrets of the Universe Fall 2024

The Philosophy of Uncertainty

What do we know?

Start simple, things like:
3 + 4 = 6 + 1

red + blue = purple

The sky is blue

Maybe we know simple algebraic relations:
If y = 0, then x + y = x

0 < n ⇒
√
n2 = n

Maybe we’ve even studied some more complex things:

Supply-Demand curves

Human Psychology

General Relativity

Charles Averill (UTD) Secrets of the Universe Fall 2024

The Philosophy of Uncertainty

What do we know?

Start simple, things like:
3 + 4 = 6 + 1

red + blue = purple

The sky is blue

Maybe we know simple algebraic relations:
If y = 0, then x + y = x

0 < n ⇒
√
n2 = n

Maybe we’ve even studied some more complex things:

Supply-Demand curves

Human Psychology

General Relativity

Charles Averill (UTD) Secrets of the Universe Fall 2024

The Philosophy of Uncertainty

What do we know?

Start simple, things like:
3 + 4 = 6 + 1

red + blue = purple

The sky is blue

Maybe we know simple algebraic relations:
If y = 0, then x + y = x

0 < n ⇒
√
n2 = n

Maybe we’ve even studied some more complex things:
Supply-Demand curves

Human Psychology

General Relativity

Charles Averill (UTD) Secrets of the Universe Fall 2024

The Philosophy of Uncertainty

What do we know?

Start simple, things like:
3 + 4 = 6 + 1

red + blue = purple

The sky is blue

Maybe we know simple algebraic relations:
If y = 0, then x + y = x

0 < n ⇒
√
n2 = n

Maybe we’ve even studied some more complex things:
Supply-Demand curves

Human Psychology

General Relativity

Charles Averill (UTD) Secrets of the Universe Fall 2024

The Philosophy of Uncertainty

What do we know?

Start simple, things like:
3 + 4 = 6 + 1

red + blue = purple

The sky is blue

Maybe we know simple algebraic relations:
If y = 0, then x + y = x

0 < n ⇒
√
n2 = n

Maybe we’ve even studied some more complex things:
Supply-Demand curves

Human Psychology

General Relativity

Charles Averill (UTD) Secrets of the Universe Fall 2024

The Philosophy of Uncertainty

Uncertainty

Life is inherently filled with uncertainty

Humans have evolved to handle uncertainty by guessing, and we have
become really good at it

We only have to make a few important guesses, then combine them
to get cool results

- this is called math

Unfortunately, math takes too long, so we add extra guesses to the
mix - these extras are often incorrect

Charles Averill (UTD) Secrets of the Universe Fall 2024

The Philosophy of Uncertainty

Uncertainty

Life is inherently filled with uncertainty

Humans have evolved to handle uncertainty by guessing, and we have
become really good at it

We only have to make a few important guesses, then combine them
to get cool results

- this is called math

Unfortunately, math takes too long, so we add extra guesses to the
mix - these extras are often incorrect

Charles Averill (UTD) Secrets of the Universe Fall 2024

The Philosophy of Uncertainty

Uncertainty

Life is inherently filled with uncertainty

Humans have evolved to handle uncertainty by guessing, and we have
become really good at it

We only have to make a few important guesses, then combine them
to get cool results

- this is called math

Unfortunately, math takes too long, so we add extra guesses to the
mix - these extras are often incorrect

Charles Averill (UTD) Secrets of the Universe Fall 2024

The Philosophy of Uncertainty

Uncertainty

Life is inherently filled with uncertainty

Humans have evolved to handle uncertainty by guessing, and we have
become really good at it

We only have to make a few important guesses, then combine them
to get cool results

- this is called math

Unfortunately, math takes too long, so we add extra guesses to the
mix - these extras are often incorrect

Charles Averill (UTD) Secrets of the Universe Fall 2024

The Philosophy of Uncertainty

Uncertainty

Life is inherently filled with uncertainty

Humans have evolved to handle uncertainty by guessing, and we have
become really good at it

We only have to make a few important guesses, then combine them
to get cool results - this is called math

Unfortunately, math takes too long, so we add extra guesses to the
mix - these extras are often incorrect

Charles Averill (UTD) Secrets of the Universe Fall 2024

The Philosophy of Uncertainty

Uncertainty

“Certainty traps”, where we are certain we’re right with no evidence,
are the main cause for things like

Database breaches

Physical infrastructure failures

Poor public policy

Eating bad food at a restaurant

We’ve developed more guesses and checks to mitigate failures like
these, but they are not 100% effective

Charles Averill (UTD) Secrets of the Universe Fall 2024

The Philosophy of Uncertainty

Uncertainty

“Certainty traps”, where we are certain we’re right with no evidence,
are the main cause for things like

Database breaches

Physical infrastructure failures

Poor public policy

Eating bad food at a restaurant

We’ve developed more guesses and checks to mitigate failures like
these, but they are not 100% effective

Charles Averill (UTD) Secrets of the Universe Fall 2024

The Philosophy of Uncertainty

Uncertainty

“Certainty traps”, where we are certain we’re right with no evidence,
are the main cause for things like

Database breaches

Physical infrastructure failures

Poor public policy

Eating bad food at a restaurant

We’ve developed more guesses and checks to mitigate failures like
these, but they are not 100% effective

Charles Averill (UTD) Secrets of the Universe Fall 2024

The Philosophy of Uncertainty

Uncertainty

“Certainty traps”, where we are certain we’re right with no evidence,
are the main cause for things like

Database breaches

Physical infrastructure failures

Poor public policy

Eating bad food at a restaurant

We’ve developed more guesses and checks to mitigate failures like
these, but they are not 100% effective

Charles Averill (UTD) Secrets of the Universe Fall 2024

The Philosophy of Uncertainty

Uncertainty

“Certainty traps”, where we are certain we’re right with no evidence,
are the main cause for things like

Database breaches

Physical infrastructure failures

Poor public policy

Eating bad food at a restaurant

We’ve developed more guesses and checks to mitigate failures like
these, but they are not 100% effective

Charles Averill (UTD) Secrets of the Universe Fall 2024

The Philosophy of Uncertainty

Uncertainty

“Certainty traps”, where we are certain we’re right with no evidence,
are the main cause for things like

Database breaches

Physical infrastructure failures

Poor public policy

Eating bad food at a restaurant

We’ve developed more guesses and checks to mitigate failures like
these, but they are not 100% effective

Charles Averill (UTD) Secrets of the Universe Fall 2024

Certainty in Security
“HIC MANEBIMVS OPTIME” - Marcus Furius Camillus

Certainty in Security

Hope

We have established that we live in a low-certainty world

This is not the end: enter High-Assurance Computing

“Let’s make rigorous, mathematically-defined checkable models of
computing so we can verify that we made the software correctly”

Pros Cons
Enhanced security Expensive
High reliability Takes a long time

Less maintenance Significantly more difficult
High trustworthiness Hard to scale

Charles Averill (UTD) Secrets of the Universe Fall 2024

Certainty in Security

Hope

We have established that we live in a low-certainty world

This is not the end: enter High-Assurance Computing

“Let’s make rigorous, mathematically-defined checkable models of
computing so we can verify that we made the software correctly”

Pros Cons
Enhanced security Expensive
High reliability Takes a long time

Less maintenance Significantly more difficult
High trustworthiness Hard to scale

Charles Averill (UTD) Secrets of the Universe Fall 2024

Certainty in Security

Hope

We have established that we live in a low-certainty world

This is not the end: enter High-Assurance Computing

“Let’s make rigorous, mathematically-defined checkable models of
computing so we can verify that we made the software correctly”

Pros Cons
Enhanced security Expensive
High reliability Takes a long time

Less maintenance Significantly more difficult
High trustworthiness Hard to scale

Charles Averill (UTD) Secrets of the Universe Fall 2024

Certainty in Security

Dumb Bugs

Anecdotally, it is clear that we as a species are very good at being
engineers - architecting large projects to solve complex problems

Anecdotally, it is clear that we as a species are really terrible when it
comes to making mistakes - they are everywhere, and they are critical

This is perhaps the most clear in the realm of software

Over the past 25 years, increased interest in cybersecurity led to
scrutiny in our cathedrals and public works

Countless “dumb bugs,” tiny one-line mistakes that turn an invaluable
utility into a weapon, have been discovered

Charles Averill (UTD) Secrets of the Universe Fall 2024

Certainty in Security

Dumb Bugs

Anecdotally, it is clear that we as a species are very good at being
engineers - architecting large projects to solve complex problems

Anecdotally, it is clear that we as a species are really terrible when it
comes to making mistakes - they are everywhere, and they are critical

This is perhaps the most clear in the realm of software

Over the past 25 years, increased interest in cybersecurity led to
scrutiny in our cathedrals and public works

Countless “dumb bugs,” tiny one-line mistakes that turn an invaluable
utility into a weapon, have been discovered

Charles Averill (UTD) Secrets of the Universe Fall 2024

Certainty in Security

Dumb Bugs

Anecdotally, it is clear that we as a species are very good at being
engineers - architecting large projects to solve complex problems

Anecdotally, it is clear that we as a species are really terrible when it
comes to making mistakes - they are everywhere, and they are critical

This is perhaps the most clear in the realm of software

Over the past 25 years, increased interest in cybersecurity led to
scrutiny in our cathedrals and public works

Countless “dumb bugs,” tiny one-line mistakes that turn an invaluable
utility into a weapon, have been discovered

Charles Averill (UTD) Secrets of the Universe Fall 2024

Certainty in Security

Dumb Bugs

Anecdotally, it is clear that we as a species are very good at being
engineers - architecting large projects to solve complex problems

Anecdotally, it is clear that we as a species are really terrible when it
comes to making mistakes - they are everywhere, and they are critical

This is perhaps the most clear in the realm of software

Over the past 25 years, increased interest in cybersecurity led to
scrutiny in our cathedrals and public works

Countless “dumb bugs,” tiny one-line mistakes that turn an invaluable
utility into a weapon, have been discovered

Charles Averill (UTD) Secrets of the Universe Fall 2024

Certainty in Security

Dumb Bugs

Anecdotally, it is clear that we as a species are very good at being
engineers - architecting large projects to solve complex problems

Anecdotally, it is clear that we as a species are really terrible when it
comes to making mistakes - they are everywhere, and they are critical

This is perhaps the most clear in the realm of software

Over the past 25 years, increased interest in cybersecurity led to
scrutiny in our cathedrals and public works

Countless “dumb bugs,” tiny one-line mistakes that turn an invaluable
utility into a weapon, have been discovered

Charles Averill (UTD) Secrets of the Universe Fall 2024

Certainty in Security

Case Study

Many examples of “dumb” software bugs
with huge impacts

Heartbleed (2014): Buffer overflow in
assumed benign code allows for huge
information leakage
Shellshock (2014): Unjustified trust in
environment variables allows for RCE on
the majority of online systems
Spectre/Meltdown (2018): Unjustified trust
in information-concealing properties of
speculative execution allows for huge
information leakage
BlueBorne (2017): Let’s find out!

Charles Averill (UTD) Secrets of the Universe Fall 2024

Certainty in Security

Case Study

Many examples of “dumb” software bugs
with huge impacts
Heartbleed (2014): Buffer overflow in
assumed benign code allows for huge
information leakage

Shellshock (2014): Unjustified trust in
environment variables allows for RCE on
the majority of online systems
Spectre/Meltdown (2018): Unjustified trust
in information-concealing properties of
speculative execution allows for huge
information leakage
BlueBorne (2017): Let’s find out!

Charles Averill (UTD) Secrets of the Universe Fall 2024

Certainty in Security

Case Study

Many examples of “dumb” software bugs
with huge impacts
Heartbleed (2014): Buffer overflow in
assumed benign code allows for huge
information leakage
Shellshock (2014): Unjustified trust in
environment variables allows for RCE on
the majority of online systems

Spectre/Meltdown (2018): Unjustified trust
in information-concealing properties of
speculative execution allows for huge
information leakage
BlueBorne (2017): Let’s find out!

Charles Averill (UTD) Secrets of the Universe Fall 2024

Certainty in Security

Case Study

Many examples of “dumb” software bugs
with huge impacts
Heartbleed (2014): Buffer overflow in
assumed benign code allows for huge
information leakage
Shellshock (2014): Unjustified trust in
environment variables allows for RCE on
the majority of online systems
Spectre/Meltdown (2018): Unjustified trust
in information-concealing properties of
speculative execution allows for huge
information leakage

BlueBorne (2017): Let’s find out!

Charles Averill (UTD) Secrets of the Universe Fall 2024

Certainty in Security

Case Study

Many examples of “dumb” software bugs
with huge impacts
Heartbleed (2014): Buffer overflow in
assumed benign code allows for huge
information leakage
Shellshock (2014): Unjustified trust in
environment variables allows for RCE on
the majority of online systems
Spectre/Meltdown (2018): Unjustified trust
in information-concealing properties of
speculative execution allows for huge
information leakage
BlueBorne (2017): Let’s find out!

Charles Averill (UTD) Secrets of the Universe Fall 2024

Certainty in Security

BlueBorne

Collection of 8 cross-platform vulnerabilities in the Bluetooth stack

One of the Linux vulnerabilities - This one allows for RCE

Charles Averill (UTD) Secrets of the Universe Fall 2024

https://github.com/torvalds/linux/blob/dcf4adbfdc7ad14ca50c1133f93f998c78493c2d/net/bluetooth/l2cap_core.c#L3507

Certainty in Security

BlueBorne

Collection of 8 cross-platform vulnerabilities in the Bluetooth stack

One of the Linux vulnerabilities - This one allows for RCE

Charles Averill (UTD) Secrets of the Universe Fall 2024

https://github.com/torvalds/linux/blob/dcf4adbfdc7ad14ca50c1133f93f998c78493c2d/net/bluetooth/l2cap_core.c#L3507

Certainty in Security

BlueBorne

rsp is an attacker-controlled buffer, this function intends to parse rsp as a
list of items via l2cap_get_conf_opt, validate it, and copy it into data.
Do you see the issue?

Charles Averill (UTD) Secrets of the Universe Fall 2024

Certainty in Security

BlueBorne

The size of the data buffer isn’t taken into account! A payload can be
crafted in rsp that overflows data and writes arbitrary data into memory.

Charles Averill (UTD) Secrets of the Universe Fall 2024

Certainty in Security

BlueBorne

Can usually be triggered without any user interaction due to some
exfiltration techniques overlooked by the Bluetooth specification

Most BT devices are always listening for traffic directed to them, and
only a hardware address is needed to initiate connection

5.3b devices at risk at time of discovery, 2b after 1 year

Hardware address supposed to be difficult to find, but actually fairly
easy if you can sniff BT packets due to plenty of un-encrypted header
data

Stack overflows like this one usually mitigated by stack protection
techniques - many Linux devices don’t use these by default

If standard mitigations don’t work, what does?

Charles Averill (UTD) Secrets of the Universe Fall 2024

Certainty in Security

BlueBorne

Can usually be triggered without any user interaction due to some
exfiltration techniques overlooked by the Bluetooth specification

Most BT devices are always listening for traffic directed to them, and
only a hardware address is needed to initiate connection

5.3b devices at risk at time of discovery, 2b after 1 year

Hardware address supposed to be difficult to find, but actually fairly
easy if you can sniff BT packets due to plenty of un-encrypted header
data

Stack overflows like this one usually mitigated by stack protection
techniques - many Linux devices don’t use these by default

If standard mitigations don’t work, what does?

Charles Averill (UTD) Secrets of the Universe Fall 2024

Certainty in Security

BlueBorne

Can usually be triggered without any user interaction due to some
exfiltration techniques overlooked by the Bluetooth specification

Most BT devices are always listening for traffic directed to them, and
only a hardware address is needed to initiate connection

5.3b devices at risk at time of discovery, 2b after 1 year

Hardware address supposed to be difficult to find, but actually fairly
easy if you can sniff BT packets due to plenty of un-encrypted header
data

Stack overflows like this one usually mitigated by stack protection
techniques - many Linux devices don’t use these by default

If standard mitigations don’t work, what does?

Charles Averill (UTD) Secrets of the Universe Fall 2024

Certainty in Security

BlueBorne

Can usually be triggered without any user interaction due to some
exfiltration techniques overlooked by the Bluetooth specification

Most BT devices are always listening for traffic directed to them, and
only a hardware address is needed to initiate connection

5.3b devices at risk at time of discovery, 2b after 1 year

Hardware address supposed to be difficult to find, but actually fairly
easy if you can sniff BT packets due to plenty of un-encrypted header
data

Stack overflows like this one usually mitigated by stack protection
techniques - many Linux devices don’t use these by default

If standard mitigations don’t work, what does?

Charles Averill (UTD) Secrets of the Universe Fall 2024

Certainty in Security

BlueBorne

Can usually be triggered without any user interaction due to some
exfiltration techniques overlooked by the Bluetooth specification

Most BT devices are always listening for traffic directed to them, and
only a hardware address is needed to initiate connection

5.3b devices at risk at time of discovery, 2b after 1 year

Hardware address supposed to be difficult to find, but actually fairly
easy if you can sniff BT packets due to plenty of un-encrypted header
data

Stack overflows like this one usually mitigated by stack protection
techniques - many Linux devices don’t use these by default

If standard mitigations don’t work, what does?

Charles Averill (UTD) Secrets of the Universe Fall 2024

Certainty in Security

BlueBorne

Can usually be triggered without any user interaction due to some
exfiltration techniques overlooked by the Bluetooth specification

Most BT devices are always listening for traffic directed to them, and
only a hardware address is needed to initiate connection

5.3b devices at risk at time of discovery, 2b after 1 year

Hardware address supposed to be difficult to find, but actually fairly
easy if you can sniff BT packets due to plenty of un-encrypted header
data

Stack overflows like this one usually mitigated by stack protection
techniques - many Linux devices don’t use these by default

If standard mitigations don’t work, what does?

Charles Averill (UTD) Secrets of the Universe Fall 2024

Certainty in Security

Formal Verification of Simple Memory

Memory is a function:

mem(x) = contents of memory at position x

set(mem, x, data) = new memory state with data at position x

h e l l o w o r ...

Arrays are a high-level construct that live on top of memory:

array = {memory state; base array address; array length}

h e l l o w o r ...Memory State

Base Address

Length

Charles Averill (UTD) Secrets of the Universe Fall 2024

Certainty in Security

Formal Verification of Simple Memory

Accessing, writing data in an array:

array.mem(array.base_addr + index)

set(array.mem, array.base_addr + index, data)

Is this safe?

No!

Proposed safe accesses and writes:

array.mem(array.base_addr + (index mod array.size)

set(array.mem, (array.base_addr + (index mod array.size, data)

Can we prove this? Yes!

Should you trust me/the system? NO! Let’s figure out why it works.

Charles Averill (UTD) Secrets of the Universe Fall 2024

https://gist.github.com/CharlesAverill/766c48a417aa7fec35168a26d1dc5546

Certainty in Security

Formal Verification of Simple Memory

Accessing, writing data in an array:

array.mem(array.base_addr + index)

set(array.mem, array.base_addr + index, data)

Is this safe? No!

Proposed safe accesses and writes:

array.mem(array.base_addr + (index mod array.size)

set(array.mem, (array.base_addr + (index mod array.size, data)

Can we prove this? Yes!

Should you trust me/the system? NO! Let’s figure out why it works.

Charles Averill (UTD) Secrets of the Universe Fall 2024

https://gist.github.com/CharlesAverill/766c48a417aa7fec35168a26d1dc5546

Certainty in Security

Formal Verification of Simple Memory

Accessing, writing data in an array:

array.mem(array.base_addr + index)

set(array.mem, array.base_addr + index, data)

Is this safe? No!

Proposed safe accesses and writes:

array.mem(array.base_addr + (index mod array.size)

set(array.mem, (array.base_addr + (index mod array.size, data)

Can we prove this? Yes!

Should you trust me/the system? NO! Let’s figure out why it works.

Charles Averill (UTD) Secrets of the Universe Fall 2024

https://gist.github.com/CharlesAverill/766c48a417aa7fec35168a26d1dc5546

Certainty in Security

Formal Verification of Simple Memory

Accessing, writing data in an array:

array.mem(array.base_addr + index)

set(array.mem, array.base_addr + index, data)

Is this safe? No!

Proposed safe accesses and writes:

array.mem(array.base_addr + (index mod array.size)

set(array.mem, (array.base_addr + (index mod array.size, data)

Can we prove this? Yes!

Should you trust me/the system? NO! Let’s figure out why it works.

Charles Averill (UTD) Secrets of the Universe Fall 2024

https://gist.github.com/CharlesAverill/766c48a417aa7fec35168a26d1dc5546

Certainty in Security

Formal Verification of Simple Memory

Accessing, writing data in an array:

array.mem(array.base_addr + index)

set(array.mem, array.base_addr + index, data)

Is this safe? No!

Proposed safe accesses and writes:

array.mem(array.base_addr + (index mod array.size)

set(array.mem, (array.base_addr + (index mod array.size, data)

Can we prove this? Yes!

Should you trust me/the system?

NO! Let’s figure out why it works.

Charles Averill (UTD) Secrets of the Universe Fall 2024

https://gist.github.com/CharlesAverill/766c48a417aa7fec35168a26d1dc5546

Certainty in Security

Formal Verification of Simple Memory

Accessing, writing data in an array:

array.mem(array.base_addr + index)

set(array.mem, array.base_addr + index, data)

Is this safe? No!

Proposed safe accesses and writes:

array.mem(array.base_addr + (index mod array.size)

set(array.mem, (array.base_addr + (index mod array.size, data)

Can we prove this? Yes!

Should you trust me/the system? NO! Let’s figure out why it works.

Charles Averill (UTD) Secrets of the Universe Fall 2024

https://gist.github.com/CharlesAverill/766c48a417aa7fec35168a26d1dc5546

Untyped Lambda Calculus
“Because Schönfinkel has in no way shown how the introduction of the
other fundamental concepts is to be avoided, and because he cannot
define them from others, he has not justified his claim. In fact he has

achieved only a new and inconvenient notation.” - Haskell Curry

Untyped Lambda Calculus

The Philosophy of Computation

Lambda Calculus is a computing model that uses simple math
definitions, instead of mechanical description of Turing Machines

LC/TM came about during a rough time in mathematics (1890-1930)
when paradoxes had been found in our assumptions

Wanted to make sense of what it meant to do computation, or
represent an equation, or decide the truth value of a statement

Charles Averill (UTD) Secrets of the Universe Fall 2024

Untyped Lambda Calculus

The Philosophy of Computation

Lambda Calculus is a computing model that uses simple math
definitions, instead of mechanical description of Turing Machines

LC/TM came about during a rough time in mathematics (1890-1930)
when paradoxes had been found in our assumptions

Wanted to make sense of what it meant to do computation, or
represent an equation, or decide the truth value of a statement

Charles Averill (UTD) Secrets of the Universe Fall 2024

Untyped Lambda Calculus

The Philosophy of Computation

Lambda Calculus is a computing model that uses simple math
definitions, instead of mechanical description of Turing Machines

LC/TM came about during a rough time in mathematics (1890-1930)
when paradoxes had been found in our assumptions

Wanted to make sense of what it meant to do computation, or
represent an equation, or decide the truth value of a statement

Charles Averill (UTD) Secrets of the Universe Fall 2024

Untyped Lambda Calculus

Implementing the Lambda Calculus

Syntax: e := v | λv.e | (e1)(e2)
Semantic(s?):

(λv.e1)(e2) ⇒ e1[e2/v]

That was…easy?

Maybe not very clear, let’s try again

Charles Averill (UTD) Secrets of the Universe Fall 2024

Untyped Lambda Calculus

Implementing the Lambda Calculus

Syntax: e := v | λv.e | (e1)(e2)
Semantic(s?):

(λv.e1)(e2) ⇒ e1[e2/v]

That was…easy?

Maybe not very clear, let’s try again

Charles Averill (UTD) Secrets of the Universe Fall 2024

Untyped Lambda Calculus

Implementing the Lambda Calculus

Syntax: e := v | λv.e | (e1)(e2)
Semantic(s?):

(λv.e1)(e2) ⇒ e1[e2/v]

That was…easy?

Maybe not very clear, let’s try again

Charles Averill (UTD) Secrets of the Universe Fall 2024

Untyped Lambda Calculus

Implementing the Lambda Calculus

In LC we have “expressions”, which can be:

Variable names (v)

Functions with single arguments, a.k.a. abstractions (λv.e)

Applications of two other expressions ((e1)(e2))

We only need one rule to compute things: when applying two expressions,
if the left is an abstraction, take the right expression and plug it into every
occurrence of the abstraction’s variable in the abstraction’s expression.

Charles Averill (UTD) Secrets of the Universe Fall 2024

Untyped Lambda Calculus

Implementing the Lambda Calculus

In LC we have “expressions”, which can be:

Variable names (v)

Functions with single arguments, a.k.a. abstractions (λv.e)

Applications of two other expressions ((e1)(e2))

We only need one rule to compute things: when applying two expressions,
if the left is an abstraction, take the right expression and plug it into every
occurrence of the abstraction’s variable in the abstraction’s expression.

Charles Averill (UTD) Secrets of the Universe Fall 2024

Untyped Lambda Calculus

Implementing the Lambda Calculus

In LC we have “expressions”, which can be:

Variable names (v)

Functions with single arguments, a.k.a. abstractions (λv.e)

Applications of two other expressions ((e1)(e2))

We only need one rule to compute things: when applying two expressions,
if the left is an abstraction, take the right expression and plug it into every
occurrence of the abstraction’s variable in the abstraction’s expression.

Charles Averill (UTD) Secrets of the Universe Fall 2024

Untyped Lambda Calculus

Implementing the Lambda Calculus

One more explanation for clarity:

Charles Averill (UTD) Secrets of the Universe Fall 2024

Untyped Lambda Calculus

Implementing the Lambda Calculus

One more explanation for clarity:

Charles Averill (UTD) Secrets of the Universe Fall 2024

Untyped Lambda Calculus

What can we do with LC?

Numbers:

0 := λf.λx.x

Successor := λn.λf.λx.f(nfx)

Booleans:

True := λx.λy.x

False := λx.λy.y

if B then P else Q := λB.λP.λQ.BPQ

Arbitrary loops: (try this for yourself ⌣̈)

Y := λf.(λx.f(xx))(λx.f(xx))

Charles Averill (UTD) Secrets of the Universe Fall 2024

Untyped Lambda Calculus

LC Issues

No data types - ints can be used as bools and etc. and it’s still a legal
expression

Non-terminating expressions (huge wrench in the mathematics)

Partial evaluation is valid - makes debugging very difficult

How are we going to solve this?

Charles Averill (UTD) Secrets of the Universe Fall 2024

Untyped Lambda Calculus

LC Issues

No data types - ints can be used as bools and etc. and it’s still a legal
expression

Non-terminating expressions (huge wrench in the mathematics)

Partial evaluation is valid - makes debugging very difficult

How are we going to solve this?

Charles Averill (UTD) Secrets of the Universe Fall 2024

Untyped Lambda Calculus

LC Issues

No data types - ints can be used as bools and etc. and it’s still a legal
expression

Non-terminating expressions (huge wrench in the mathematics)

Partial evaluation is valid - makes debugging very difficult

How are we going to solve this?

Charles Averill (UTD) Secrets of the Universe Fall 2024

Typed Lambda Calculus
“For any formal system, we can really only understand its precise

details after attempting to implement it.” - Simon Thompson

Typed Lambda Calculus

Simply-Typed Lambda Calculus

As with many things in Computer Science, let’s solve all of our problems
by inventing Type Theory.

We are going to add data types to LC and see where it takes us. We will
gain things and lose things when we do this!

Charles Averill (UTD) Secrets of the Universe Fall 2024

Typed Lambda Calculus

Simply-Typed Lambda Calculus

As with many things in Computer Science, let’s solve all of our problems
by inventing Type Theory.

We are going to add data types to LC and see where it takes us. We will
gain things and lose things when we do this!

Charles Averill (UTD) Secrets of the Universe Fall 2024

Typed Lambda Calculus

STLC

e := () | v | λv : t.e | (e1)(e2)
t := unit | t1 → t2

(1)
(λv : t.e1)(e2) ⇓ e1[e2/v]

(2)
typeof(()) : unit

(3)
typeof(v) : t1 typeof(e) : t2

typeof(λv : t1.e) : t1 → t2

(4)
typeof(e1) : t1 → t2 typeof(e2) : t1

typeof(e1e2) : t2

Charles Averill (UTD) Secrets of the Universe Fall 2024

Typed Lambda Calculus

Examples

λx : int. x+ 5

λs : string. s ++ “hello world”
λf : (int → int). λg : (int → int). λn : int. f(g(n))

Charles Averill (UTD) Secrets of the Universe Fall 2024

Type Inhabitation

Type Inhabitation

Another Theoretical Thing

Let’s take what seems to be a detour and think about a fun little
puzzle.

First, we will add a new type to our STLC: void. void is special,
because there is no value that has type void. Therefore, the type
void is uninhabited.

We know due to rule (2) that the expression () has type unit, so we
say that “unit is inhabited by the value ().”

We can show that the type unit → unit is inhabited by the value:

λx : unit. x

Charles Averill (UTD) Secrets of the Universe Fall 2024

Type Inhabitation

Another Theoretical Thing

Let’s take what seems to be a detour and think about a fun little
puzzle.

First, we will add a new type to our STLC: void. void is special,
because there is no value that has type void. Therefore, the type
void is uninhabited.

We know due to rule (2) that the expression () has type unit, so we
say that “unit is inhabited by the value ().”

We can show that the type unit → unit is inhabited by the value:

λx : unit. x

Charles Averill (UTD) Secrets of the Universe Fall 2024

Type Inhabitation

Another Theoretical Thing

Let’s take what seems to be a detour and think about a fun little
puzzle.

First, we will add a new type to our STLC: void. void is special,
because there is no value that has type void. Therefore, the type
void is uninhabited.

We know due to rule (2) that the expression () has type unit, so we
say that “unit is inhabited by the value ().”

We can show that the type unit → unit is inhabited by the value:

λx : unit. x

Charles Averill (UTD) Secrets of the Universe Fall 2024

Type Inhabitation

Another Theoretical Thing

Let’s take what seems to be a detour and think about a fun little
puzzle.

First, we will add a new type to our STLC: void. void is special,
because there is no value that has type void. Therefore, the type
void is uninhabited.

We know due to rule (2) that the expression () has type unit, so we
say that “unit is inhabited by the value ().”

We can show that the type unit → unit is inhabited by the value:

λx : unit. x

Charles Averill (UTD) Secrets of the Universe Fall 2024

Type Inhabitation

Another Theoretical Thing

Let’s take what seems to be a detour and think about a fun little
puzzle.

First, we will add a new type to our STLC: void. void is special,
because there is no value that has type void. Therefore, the type
void is uninhabited.

We know due to rule (2) that the expression () has type unit, so we
say that “unit is inhabited by the value ().”

We can show that the type unit → unit is inhabited by the value:

λx : unit. x

Charles Averill (UTD) Secrets of the Universe Fall 2024

Type Inhabitation

Another Theoretical Thing

Let’s take what seems to be a detour and think about a fun little
puzzle.

First, we will add a new type to our STLC: void. void is special,
because there is no value that has type void. Therefore, the type
void is uninhabited.

We know due to rule (2) that the expression () has type unit, so we
say that “unit is inhabited by the value ().”

We can show that the type unit → unit is inhabited by the value:

λx : unit. x

Charles Averill (UTD) Secrets of the Universe Fall 2024

Type Inhabitation

Another Theoretical Thing

So if void is uninhabited, and unit is inhabited, and unit → unit is
inhabited, is this type inhabited?

void → unit

What about this type?
void → void

What about this type?
unit → void

Charles Averill (UTD) Secrets of the Universe Fall 2024

Type Inhabitation

Another Theoretical Thing

So if void is uninhabited, and unit is inhabited, and unit → unit is
inhabited, is this type inhabited? Yes! λx : void. ()

void → unit

What about this type?
void → void

What about this type?
unit → void

Charles Averill (UTD) Secrets of the Universe Fall 2024

Type Inhabitation

Another Theoretical Thing

So if void is uninhabited, and unit is inhabited, and unit → unit is
inhabited, is this type inhabited? Yes! λx : void. ()

void → unit

What about this type? Yes! λx : void. x

void → void

What about this type?
unit → void

Charles Averill (UTD) Secrets of the Universe Fall 2024

Type Inhabitation

Another Theoretical Thing

So if void is uninhabited, and unit is inhabited, and unit → unit is
inhabited, is this type inhabited? Yes! λx : void. ()

void → unit

What about this type? Yes! λx : void. x

void → void

What about this type? No!

unit → void

Charles Averill (UTD) Secrets of the Universe Fall 2024

Type Inhabitation

More Types

Very quickly, let’s add some more types:

Pairs: (e1, e2). These expressions have type
typeof(e1) ∗ typeof(e2), we call them “product types”

Constructed Types: CON1t1+t2(e) | CON2t1+t2(e). These expressions
have type t1 + t2, we call them “sum types”

We can’t make a pair that has a void in it, because no expression has type
void.

But, can we make a sum type with the signature unit + void?

Yes! One value of this type is CON1unit+void(())

Try showing that the following is inhabited:

unit ∗ (unit → (void + (unit → unit)))

Charles Averill (UTD) Secrets of the Universe Fall 2024

Type Inhabitation

More Types

Very quickly, let’s add some more types:

Pairs: (e1, e2). These expressions have type
typeof(e1) ∗ typeof(e2), we call them “product types”

Constructed Types: CON1t1+t2(e) | CON2t1+t2(e). These expressions
have type t1 + t2, we call them “sum types”

We can’t make a pair that has a void in it, because no expression has type
void.

But, can we make a sum type with the signature unit + void?

Yes! One value of this type is CON1unit+void(())

Try showing that the following is inhabited:

unit ∗ (unit → (void + (unit → unit)))

Charles Averill (UTD) Secrets of the Universe Fall 2024

Type Inhabitation

More Types

Very quickly, let’s add some more types:

Pairs: (e1, e2). These expressions have type
typeof(e1) ∗ typeof(e2), we call them “product types”

Constructed Types: CON1t1+t2(e) | CON2t1+t2(e). These expressions
have type t1 + t2, we call them “sum types”

We can’t make a pair that has a void in it, because no expression has type
void.

But, can we make a sum type with the signature unit + void?

Yes! One value of this type is CON1unit+void(())

Try showing that the following is inhabited:

unit ∗ (unit → (void + (unit → unit)))

Charles Averill (UTD) Secrets of the Universe Fall 2024

Type Inhabitation

More Types

Very quickly, let’s add some more types:

Pairs: (e1, e2). These expressions have type
typeof(e1) ∗ typeof(e2), we call them “product types”

Constructed Types: CON1t1+t2(e) | CON2t1+t2(e). These expressions
have type t1 + t2, we call them “sum types”

We can’t make a pair that has a void in it, because no expression has type
void.

But,

can we make a sum type with the signature unit + void?

Yes! One value of this type is CON1unit+void(())

Try showing that the following is inhabited:

unit ∗ (unit → (void + (unit → unit)))

Charles Averill (UTD) Secrets of the Universe Fall 2024

Type Inhabitation

More Types

Very quickly, let’s add some more types:

Pairs: (e1, e2). These expressions have type
typeof(e1) ∗ typeof(e2), we call them “product types”

Constructed Types: CON1t1+t2(e) | CON2t1+t2(e). These expressions
have type t1 + t2, we call them “sum types”

We can’t make a pair that has a void in it, because no expression has type
void.

But, can we make a sum type with the signature unit + void?

Yes! One value of this type is CON1unit+void(())

Try showing that the following is inhabited:

unit ∗ (unit → (void + (unit → unit)))

Charles Averill (UTD) Secrets of the Universe Fall 2024

Type Inhabitation

More Types

Very quickly, let’s add some more types:

Pairs: (e1, e2). These expressions have type
typeof(e1) ∗ typeof(e2), we call them “product types”

Constructed Types: CON1t1+t2(e) | CON2t1+t2(e). These expressions
have type t1 + t2, we call them “sum types”

We can’t make a pair that has a void in it, because no expression has type
void.

But, can we make a sum type with the signature unit + void?

Yes! One value of this type is CON1unit+void(())

Try showing that the following is inhabited:

unit ∗ (unit → (void + (unit → unit)))

Charles Averill (UTD) Secrets of the Universe Fall 2024

Type Inhabitation

More Types

Very quickly, let’s add some more types:

Pairs: (e1, e2). These expressions have type
typeof(e1) ∗ typeof(e2), we call them “product types”

Constructed Types: CON1t1+t2(e) | CON2t1+t2(e). These expressions
have type t1 + t2, we call them “sum types”

We can’t make a pair that has a void in it, because no expression has type
void.

But, can we make a sum type with the signature unit + void?

Yes! One value of this type is CON1unit+void(())

Try showing that the following is inhabited:

unit ∗ (unit → (void + (unit → unit)))

Charles Averill (UTD) Secrets of the Universe Fall 2024

Question Intermission

Binding Types with Logic

Binding Types with Logic

Type Checking

Remember that we had some rules about the valid types of STLC
expressions

(2)
typeof(()) : unit

(3)
typeof(v) : t1 typeof(e) : t2

typeof(λv : t1.e) : t1 → t2

(4)
typeof(e1) : t1 → t2 typeof(e2) : t1

typeof(e1e2) : t2

The whole point of these is to be able to statically check the
program (at compile-time) to ensure that it’s well-typed (meaning we
can’t use numbers as booleans or strings as functions or etc.)

Let’s see how a simple type checker works

Charles Averill (UTD) Secrets of the Universe Fall 2024

https://github.com/CharlesAverill/lucid/blob/main/lib/typechecker.ml

Binding Types with Logic

Type Checking

Remember that we had some rules about the valid types of STLC
expressions

(2)
typeof(()) : unit

(3)
typeof(v) : t1 typeof(e) : t2

typeof(λv : t1.e) : t1 → t2

(4)
typeof(e1) : t1 → t2 typeof(e2) : t1

typeof(e1e2) : t2

The whole point of these is to be able to statically check the
program (at compile-time) to ensure that it’s well-typed (meaning we
can’t use numbers as booleans or strings as functions or etc.)

Let’s see how a simple type checker works

Charles Averill (UTD) Secrets of the Universe Fall 2024

https://github.com/CharlesAverill/lucid/blob/main/lib/typechecker.ml

Binding Types with Logic

Type Checking

Remember that we had some rules about the valid types of STLC
expressions

(2)
typeof(()) : unit

(3)
typeof(v) : t1 typeof(e) : t2

typeof(λv : t1.e) : t1 → t2

(4)
typeof(e1) : t1 → t2 typeof(e2) : t1

typeof(e1e2) : t2

The whole point of these is to be able to statically check the
program (at compile-time) to ensure that it’s well-typed (meaning we
can’t use numbers as booleans or strings as functions or etc.)

Let’s see how a simple type checker works

Charles Averill (UTD) Secrets of the Universe Fall 2024

https://github.com/CharlesAverill/lucid/blob/main/lib/typechecker.ml

Binding Types with Logic

Curry-Howard Isomorphism

We’re finally ready to assemble all of these pieces into a beautiful
confluence between seemingly-unrelated things: The Curry-Howard
Isomorphism.

In short, it states that types are theorems, and programs are proofs of
those theorems. Let’s dig into why.

Charles Averill (UTD) Secrets of the Universe Fall 2024

https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence
https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence

Binding Types with Logic

Curry-Howard Isomorphism

We’re finally ready to assemble all of these pieces into a beautiful
confluence between seemingly-unrelated things: The Curry-Howard
Isomorphism.

In short, it states that types are theorems, and programs are proofs of
those theorems. Let’s dig into why.

Charles Averill (UTD) Secrets of the Universe Fall 2024

https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence
https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence

Binding Types with Logic

Why we did Type Inhabitation

The kinds of types we added to STLC were very deliberate:
Type Inhabited
unit True

Charles Averill (UTD) Secrets of the Universe Fall 2024

Binding Types with Logic

Why we did Type Inhabitation

The kinds of types we added to STLC were very deliberate:
Type Inhabited
unit True
void False

Charles Averill (UTD) Secrets of the Universe Fall 2024

Binding Types with Logic

Why we did Type Inhabitation

The kinds of types we added to STLC were very deliberate:
Type Inhabited
unit True
void False

void * void False

Charles Averill (UTD) Secrets of the Universe Fall 2024

Binding Types with Logic

Why we did Type Inhabitation

The kinds of types we added to STLC were very deliberate:
Type Inhabited
unit True
void False

void * void False
void * unit False

Charles Averill (UTD) Secrets of the Universe Fall 2024

Binding Types with Logic

Why we did Type Inhabitation

The kinds of types we added to STLC were very deliberate:
Type Inhabited
unit True
void False

void * void False
void * unit False
unit * void False

Charles Averill (UTD) Secrets of the Universe Fall 2024

Binding Types with Logic

Why we did Type Inhabitation

The kinds of types we added to STLC were very deliberate:
Type Inhabited
unit True
void False

void * void False
void * unit False
unit * void False
unit * unit True

Charles Averill (UTD) Secrets of the Universe Fall 2024

Binding Types with Logic

Why we did Type Inhabitation

The kinds of types we added to STLC were very deliberate:
Type Inhabited
unit True
void False

void * void False
void * unit False
unit * void False
unit * unit True
void + void False

Charles Averill (UTD) Secrets of the Universe Fall 2024

Binding Types with Logic

Why we did Type Inhabitation

The kinds of types we added to STLC were very deliberate:
Type Inhabited
unit True
void False

void * void False
void * unit False
unit * void False
unit * unit True
void + void False
void + unit True

Charles Averill (UTD) Secrets of the Universe Fall 2024

Binding Types with Logic

Why we did Type Inhabitation

The kinds of types we added to STLC were very deliberate:
Type Inhabited
unit True
void False

void * void False
void * unit False
unit * void False
unit * unit True
void + void False
void + unit True
unit + void True

Charles Averill (UTD) Secrets of the Universe Fall 2024

Binding Types with Logic

Why we did Type Inhabitation

The kinds of types we added to STLC were very deliberate:
Type Inhabited
unit True
void False

void * void False
void * unit False
unit * void False
unit * unit True
void + void False
void + unit True
unit + void True
unit + unit True

Charles Averill (UTD) Secrets of the Universe Fall 2024

Binding Types with Logic

Why we did Type Inhabitation

The kinds of types we added to STLC were very deliberate:
Type Inhabited
unit True
void False

void * void False
void * unit False
unit * void False
unit * unit True
void + void False
void + unit True
unit + void True
unit + unit True

Type Inhabited
void → void True

Charles Averill (UTD) Secrets of the Universe Fall 2024

Binding Types with Logic

Why we did Type Inhabitation

The kinds of types we added to STLC were very deliberate:
Type Inhabited
unit True
void False

void * void False
void * unit False
unit * void False
unit * unit True
void + void False
void + unit True
unit + void True
unit + unit True

Type Inhabited
void → void True
void → unit True

Charles Averill (UTD) Secrets of the Universe Fall 2024

Binding Types with Logic

Why we did Type Inhabitation

The kinds of types we added to STLC were very deliberate:
Type Inhabited
unit True
void False

void * void False
void * unit False
unit * void False
unit * unit True
void + void False
void + unit True
unit + void True
unit + unit True

Type Inhabited
void → void True
void → unit True
unit → void False

Charles Averill (UTD) Secrets of the Universe Fall 2024

Binding Types with Logic

Why we did Type Inhabitation

The kinds of types we added to STLC were very deliberate:
Type Inhabited
unit True
void False

void * void False
void * unit False
unit * void False
unit * unit True
void + void False
void + unit True
unit + void True
unit + unit True

Type Inhabited
void → void True
void → unit True
unit → void False
unit → unit True

Charles Averill (UTD) Secrets of the Universe Fall 2024

Binding Types with Logic

Why we did Type Inhabitation

The kinds of types we added to STLC were very deliberate:
Logical Expression Truth Value

T True
F False

F ∧ F False
F ∧ T False
T ∧ F False
T ∧ T True
F ∨ F False
F ∨ T True
T ∨ F True
T ∨ T True

Logical Expression Truth Value
F → F True
F → T True
T → F False
T → T True

Charles Averill (UTD) Secrets of the Universe Fall 2024

Binding Types with Logic

Why the CHI matters

Think about that - we have

A language that natively encodes the philosophical ideas of theorems
and proofs within its types and expressions

That can be (somewhat) trivially type-checked

Its semantics are simple enough that they fit on a single presentation
slide

That means that with careful engineering, some type system extensions,
and lots of confidence from lots of mathematicians, we can create a

high-assurance

automated proof checker.

Enter Rocq.

Charles Averill (UTD) Secrets of the Universe Fall 2024

Binding Types with Logic

Why the CHI matters

Think about that - we have

A language that natively encodes the philosophical ideas of theorems
and proofs within its types and expressions

That can be (somewhat) trivially type-checked

Its semantics are simple enough that they fit on a single presentation
slide

That means that with careful engineering, some type system extensions,
and lots of confidence from lots of mathematicians, we can create a

high-assurance

automated proof checker.

Enter Rocq.

Charles Averill (UTD) Secrets of the Universe Fall 2024

Binding Types with Logic

Why the CHI matters

Think about that - we have

A language that natively encodes the philosophical ideas of theorems
and proofs within its types and expressions

That can be (somewhat) trivially type-checked

Its semantics are simple enough that they fit on a single presentation
slide

That means that with careful engineering, some type system extensions,
and lots of confidence from lots of mathematicians, we can create a

high-assurance

automated proof checker.

Enter Rocq.

Charles Averill (UTD) Secrets of the Universe Fall 2024

Binding Types with Logic

Why the CHI matters

Think about that - we have

A language that natively encodes the philosophical ideas of theorems
and proofs within its types and expressions

That can be (somewhat) trivially type-checked

Its semantics are simple enough that they fit on a single presentation
slide

That means that with careful engineering, some type system extensions,
and lots of confidence from lots of mathematicians, we can create a

high-assurance

automated proof checker.

Enter Rocq.

Charles Averill (UTD) Secrets of the Universe Fall 2024

Binding Types with Logic

Why the CHI matters

Think about that - we have

A language that natively encodes the philosophical ideas of theorems
and proofs within its types and expressions

That can be (somewhat) trivially type-checked

Its semantics are simple enough that they fit on a single presentation
slide

That means that with careful engineering, some type system extensions,
and lots of confidence from lots of mathematicians, we can create a

high-assurance automated

proof checker.

Enter Rocq.

Charles Averill (UTD) Secrets of the Universe Fall 2024

Binding Types with Logic

Why the CHI matters

Think about that - we have

A language that natively encodes the philosophical ideas of theorems
and proofs within its types and expressions

That can be (somewhat) trivially type-checked

Its semantics are simple enough that they fit on a single presentation
slide

That means that with careful engineering, some type system extensions,
and lots of confidence from lots of mathematicians, we can create a

high-assurance automated proof checker.

Enter Rocq.

Charles Averill (UTD) Secrets of the Universe Fall 2024

Binding Types with Logic

Why the CHI matters

Think about that - we have

A language that natively encodes the philosophical ideas of theorems
and proofs within its types and expressions

That can be (somewhat) trivially type-checked

Its semantics are simple enough that they fit on a single presentation
slide

That means that with careful engineering, some type system extensions,
and lots of confidence from lots of mathematicians, we can create a

high-assurance automated proof checker.

Enter Rocq.

Charles Averill (UTD) Secrets of the Universe Fall 2024

Rocq
“Logic takes care of itself; all we have to do is to look and see how it

does it.” - Ludwig Wittgenstein

Rocq

Rocq

Rocq is an automated theorem proving system, containing a
programming language called Gallina, as well as a proof language

Rocq is essentially an implementation of the Curry-Howard
isomorphism, binding the concepts of types, theorems, programs, and
proofs into a cohesive lambda calculus (CiC) that allows for
high-assurance proof checking

Has an extremely small TCB hand-verified by thousands of
mathematicians for decades, and now machine-checked by projects
implementing metatheory

Charles Averill (UTD) Secrets of the Universe Fall 2024

Rocq

Rocq

Rocq is an automated theorem proving system, containing a
programming language called Gallina, as well as a proof language

Rocq is essentially an implementation of the Curry-Howard
isomorphism, binding the concepts of types, theorems, programs, and
proofs into a cohesive lambda calculus (CiC) that allows for
high-assurance proof checking

Has an extremely small TCB hand-verified by thousands of
mathematicians for decades, and now machine-checked by projects
implementing metatheory

Charles Averill (UTD) Secrets of the Universe Fall 2024

Rocq

Rocq

Rocq is an automated theorem proving system, containing a
programming language called Gallina, as well as a proof language

Rocq is essentially an implementation of the Curry-Howard
isomorphism, binding the concepts of types, theorems, programs, and
proofs into a cohesive lambda calculus (CiC) that allows for
high-assurance proof checking

Has an extremely small TCB hand-verified by thousands of
mathematicians for decades, and now machine-checked by projects
implementing metatheory

Charles Averill (UTD) Secrets of the Universe Fall 2024

Rocq

The Calculus of Inductive Constructions

Rocq relies on the Calculus of Inductive Constructions, a variant of typed
lambda calculus that combines the three primary type system additions, to
provide the expressiveness necessary to state theorems that we’re
interested in:

Parametric Polymorphism (type to term) - Adds a new kind of abstraction
that takes a type as input and returns an expression (Λα.e) - allows us to
express properties of generic types

Dependent Types (term to type) - Adds the capability to define expressions
with types that change depending on the contents of the expression (e.g.
int list 5 vs int list 3) - this gives us the expressivity to define
complex properties of quantified variables
Type Constructors (type to type) - Adds a new kind of abstraction that
takes a type as input and returns a new type (Πα.t) - this is necessary
to avoid some paradoxes about the “type of types”

Charles Averill (UTD) Secrets of the Universe Fall 2024

Rocq

The Calculus of Inductive Constructions

Rocq relies on the Calculus of Inductive Constructions, a variant of typed
lambda calculus that combines the three primary type system additions, to
provide the expressiveness necessary to state theorems that we’re
interested in:

Parametric Polymorphism (type to term) - Adds a new kind of abstraction
that takes a type as input and returns an expression (Λα.e) - allows us to
express properties of generic types
Dependent Types (term to type) - Adds the capability to define expressions
with types that change depending on the contents of the expression (e.g.
int list 5 vs int list 3) - this gives us the expressivity to define
complex properties of quantified variables

Type Constructors (type to type) - Adds a new kind of abstraction that
takes a type as input and returns a new type (Πα.t) - this is necessary
to avoid some paradoxes about the “type of types”

Charles Averill (UTD) Secrets of the Universe Fall 2024

Rocq

The Calculus of Inductive Constructions

Rocq relies on the Calculus of Inductive Constructions, a variant of typed
lambda calculus that combines the three primary type system additions, to
provide the expressiveness necessary to state theorems that we’re
interested in:

Parametric Polymorphism (type to term) - Adds a new kind of abstraction
that takes a type as input and returns an expression (Λα.e) - allows us to
express properties of generic types
Dependent Types (term to type) - Adds the capability to define expressions
with types that change depending on the contents of the expression (e.g.
int list 5 vs int list 3) - this gives us the expressivity to define
complex properties of quantified variables
Type Constructors (type to type) - Adds a new kind of abstraction that
takes a type as input and returns a new type (Πα.t) - this is necessary
to avoid some paradoxes about the “type of types”

Charles Averill (UTD) Secrets of the Universe Fall 2024

Rocq

Lambda Cube

Charles Averill (UTD) Secrets of the Universe Fall 2024

https://github.com/CharlesAverill/zenith/blob/main/media/lambdacube.gif

Rocq

A Proof

Inductive nat : Type :=
| O
| S (n : nat).

Theorem add_0_r:
forall (n : nat), n + 0 = n.

Proof.
intros. induction n.
(* if n = 0 *)
- reflexivity.
(* if n = S n' *)
- simpl. rewrite IHn. reflexivity.

Qed.

Theorem andb_true: forall (b : bool), b && true = b.
Proof. intros. destruct b; reflexivity. Qed.

Charles Averill (UTD) Secrets of the Universe Fall 2024

Rocq

Breakdown

Inductive nat : Type :=
| O
| S (n : nat).

“There is a thing called ‘nat’ and it can either be O or it can be S applied
to another nat.”

Charles Averill (UTD) Secrets of the Universe Fall 2024

Rocq

Breakdown

Theorem add_0_r:
forall (n : nat), n + 0 = n.

Proof.
intros. induction n.
(* if n = 0 *)
- reflexivity.
(* if n = S n' *)
- simpl. rewrite IHn. reflexivity.

Qed.

“I propose this thing called ‘add_0_r’ which says that for all natural
numbers n, n+ 0 = n. I will prove it via an induction on n, using the
inductive hypothesis in the inductive step.”

Charles Averill (UTD) Secrets of the Universe Fall 2024

Rocq

Breakdown

Theorem andb_true:
forall (b : bool), b && true = b.

Proof.
intros. destruct b; reflexivity.

“I propose this thing called ‘andb_true’ which says that for all booleans b,
b && true = true. I will prove it via a case analysis of b.”

Me: “I think this type is inhabited:”
bool : b → (eq (andb b true) b)

Rocq: “I don’t believe you”
Me: “I’ll show you it’s inhabited:”

λ b : bool. case b of
| false → eq_refl (andb false true) false

| true → eq_refl (andb true true) true

Charles Averill (UTD) Secrets of the Universe Fall 2024

Rocq

What’s the Point?

Rocq and other theorem provers are being used for tons of things:

AWS and cryptography, general security, SAT solving

NASA and various mission-critical verified control systems

Correct compilers

One of various systems for verifying code for distributed systems

Writing proofs about arbitrary machine code

And about a thousand other things

Charles Averill (UTD) Secrets of the Universe Fall 2024

https://www.amazon.science/tag/formal-verification
https://shemesh.larc.nasa.gov/fm/
https://en.wikipedia.org/wiki/CompCert
https://github.com/uwplse/verdi
https://personal.utdallas.edu/~hamlen/hamlen19feast.pdf

Rocq

What’s the Point?

Rocq and other theorem provers are being used for tons of things:

AWS and cryptography, general security, SAT solving

NASA and various mission-critical verified control systems

Correct compilers

One of various systems for verifying code for distributed systems

Writing proofs about arbitrary machine code

And about a thousand other things

Charles Averill (UTD) Secrets of the Universe Fall 2024

https://www.amazon.science/tag/formal-verification
https://shemesh.larc.nasa.gov/fm/
https://en.wikipedia.org/wiki/CompCert
https://github.com/uwplse/verdi
https://personal.utdallas.edu/~hamlen/hamlen19feast.pdf

Rocq

What’s the Point?

Rocq and other theorem provers are being used for tons of things:

AWS and cryptography, general security, SAT solving

NASA and various mission-critical verified control systems

Correct compilers

One of various systems for verifying code for distributed systems

Writing proofs about arbitrary machine code

And about a thousand other things

Charles Averill (UTD) Secrets of the Universe Fall 2024

https://www.amazon.science/tag/formal-verification
https://shemesh.larc.nasa.gov/fm/
https://en.wikipedia.org/wiki/CompCert
https://github.com/uwplse/verdi
https://personal.utdallas.edu/~hamlen/hamlen19feast.pdf

Rocq

What’s the Point?

Rocq and other theorem provers are being used for tons of things:

AWS and cryptography, general security, SAT solving

NASA and various mission-critical verified control systems

Correct compilers

One of various systems for verifying code for distributed systems

Writing proofs about arbitrary machine code

And about a thousand other things

Charles Averill (UTD) Secrets of the Universe Fall 2024

https://www.amazon.science/tag/formal-verification
https://shemesh.larc.nasa.gov/fm/
https://en.wikipedia.org/wiki/CompCert
https://github.com/uwplse/verdi
https://personal.utdallas.edu/~hamlen/hamlen19feast.pdf

Rocq

What’s the Point?

Rocq and other theorem provers are being used for tons of things:

AWS and cryptography, general security, SAT solving

NASA and various mission-critical verified control systems

Correct compilers

One of various systems for verifying code for distributed systems

Writing proofs about arbitrary machine code

And about a thousand other things

Charles Averill (UTD) Secrets of the Universe Fall 2024

https://www.amazon.science/tag/formal-verification
https://shemesh.larc.nasa.gov/fm/
https://en.wikipedia.org/wiki/CompCert
https://github.com/uwplse/verdi
https://personal.utdallas.edu/~hamlen/hamlen19feast.pdf

Rocq

What’s the Point?

Rocq and other theorem provers are being used for tons of things:

AWS and cryptography, general security, SAT solving

NASA and various mission-critical verified control systems

Correct compilers

One of various systems for verifying code for distributed systems

Writing proofs about arbitrary machine code

And about a thousand other things

Charles Averill (UTD) Secrets of the Universe Fall 2024

https://www.amazon.science/tag/formal-verification
https://shemesh.larc.nasa.gov/fm/
https://en.wikipedia.org/wiki/CompCert
https://github.com/uwplse/verdi
https://personal.utdallas.edu/~hamlen/hamlen19feast.pdf

Conclusion

Conclusion

Summary

We’re not as good at guessing as we think we are

When lives are on the line, formal verification is one of the strongest
methods to ensuring the correctness of software

FV is accomplished via elegant relationships between mathematics
and programming

FV is on the rise - expect it to explode in popularity within the
decade!

Want to learn? Check out Software Foundations, an incredible textbook
designed to teach you the Rocq system from the ground-up.

Charles Averill (UTD) Secrets of the Universe Fall 2024

https://softwarefoundations.cis.upenn.edu/

Conclusion

Summary

We’re not as good at guessing as we think we are

When lives are on the line, formal verification is one of the strongest
methods to ensuring the correctness of software

FV is accomplished via elegant relationships between mathematics
and programming

FV is on the rise - expect it to explode in popularity within the
decade!

Want to learn? Check out Software Foundations, an incredible textbook
designed to teach you the Rocq system from the ground-up.

Charles Averill (UTD) Secrets of the Universe Fall 2024

https://softwarefoundations.cis.upenn.edu/

Conclusion

Summary

We’re not as good at guessing as we think we are

When lives are on the line, formal verification is one of the strongest
methods to ensuring the correctness of software

FV is accomplished via elegant relationships between mathematics
and programming

FV is on the rise - expect it to explode in popularity within the
decade!

Want to learn? Check out Software Foundations, an incredible textbook
designed to teach you the Rocq system from the ground-up.

Charles Averill (UTD) Secrets of the Universe Fall 2024

https://softwarefoundations.cis.upenn.edu/

Conclusion

Summary

We’re not as good at guessing as we think we are

When lives are on the line, formal verification is one of the strongest
methods to ensuring the correctness of software

FV is accomplished via elegant relationships between mathematics
and programming

FV is on the rise - expect it to explode in popularity within the
decade!

Want to learn? Check out Software Foundations, an incredible textbook
designed to teach you the Rocq system from the ground-up.

Charles Averill (UTD) Secrets of the Universe Fall 2024

https://softwarefoundations.cis.upenn.edu/

	The Philosophy of Uncertainty
	Certainty in Security
	Untyped Lambda Calculus
	Typed Lambda Calculus
	Type Inhabitation
	Question Intermission
	Binding Types with Logic
	Rocq
	Conclusion

