Learning Synergies between Pushing and Grasping with Self-supervised Deep Reinforcement Learning

Zeng, Song, Welker, Lee, Rodriguez, Funkouser

Charles Averill

charles@utdallas.edu Intelligent Robotics and Vision Laboratory The University of Texas at Dallas

April 2022

Table of Contents

1 [Background](#page-2-0)

2 [Motivation](#page-4-0)

3 [Problem Formulation](#page-5-0)

4 [Method](#page-6-0)

[Action Types](#page-7-0) E [Learning the Action-Value function with CNNs](#page-8-0) **[Network Architecture](#page-9-0)**

5 [Results](#page-10-0)

6 [Conclusion](#page-12-0)

7 [Resources](#page-13-0)

Background

- **No.** What does your hand do?
	- **Prehensile motion (grasping)**
	- Non-prehensile motion (pushing)
- We want robots to perform tasks humans can
- Humans can simplify cluttered environments by pushing and grasping objects
- Therefore, robots should be able to skillfully push and grasp objects to better interact with complex environments

- Pushing Can rearrange objects to make space for grasping apparatus
- Grasping Can displace objects to reduce object collisions when pushing

Background

- Pushing and grasping have been studied a lot for the past 40 years, but in isolation
- Previous pushing research typically involves loosely-defined policies
	- **B** "Separate 2 objects"
	- **n** "Make space at this location"
	- **Break up clusters of objects**"
- Previous grasping research typically involves human-labeled data inefficient and prone to overfitting
- **n** Combining pushing and grasping has been researched, but relies on hardcoded policies \rightarrow limited utility, capability to adapt

Motivation

- Combine pushing and grasping learning for enhanced synergy between the two actions
- Utilize reinforcement learning to avoid manually-labeled data
- Produce an end-to-end DNN training framework, no intermediate data processing to improve results

Problem Formulation

Markov Decision Processes excel in situations with deterministic control in addition to randomness, like robots in the real world

- **n** At a time *t* for a given state s_t , the agent's policy $\pi(s_t)$ will choose an action *at*.
- Executing a_t transitions the agent to the state s_{t+1} and yields the reward $R_{a_t}(s_t, s_{t+1})$
- Goal is to train a policy that maximizes $\sum_{i=t_o}^{t_{end}} R_{a_i}(s_i,s_{i+1})$
- In Ideal policy should choose actions such that the action-value function $Q_{\pi}(s_t, a_t)$ is maximized
	- **Action-value function (Q-function) measures expected reward from** taking action *a^t* in state *s^t*
	- $\scriptstyle\rm II$ This is the general outline of the Q-learning algorithm (if you hadn't guessed already)

Method

- States s_t are represented by RGBD images of the table scene that are projected into a heightmap
	- \blacksquare Heightmap is rotated in 16 uniform orientations to account for different control angles
- Actions *a^t* are represented by a tuple of one of the two motion primitives (pushing or grasping) *ψ* at a 3D location *q*

 $a = (\psi, q)|\psi \in \{\text{pushing, grasping}\}, q \cong p \in s_t$

Action Types

- When pushing, *q* represents the starting point of a straight 10cm push
	- When grasping, *q* represents the center position of a grasp motion in which the gripper attempts to move 3cm below *q* before grasping

Learning the Action-Value function with CNNs

- **Authors utilize two FCNNs, one** for each motion primitive
- Networks take in heightmaps (s_t) and output heatmaps of expected Q values for their respective actions at the corresponding *q* to each pixel *p*

- Maximum Q value across each network output is used to select the action to perform
- Grasping reward $R_g(s_t,s_{t+1}) = 1$ iff grasp was successful
- Pushing reward $R_p(s_t,s_{t+1}) = 0.5$ iff push caused some change in the heightmaps of s_t , s_{t+1} greater than a threshold of $\tau.$
	- **Pushing reward doesn't encode the concept of enabling grasping,** just change in the environment.

Charles Averill (UTD) **[Pushing and Grasping Synergy](#page-0-0)** April 2022

Network Architecture

Networks have identical structure: two 121-layer DenseNets, pretrained on ImageNet

One network processes RGB, the other processes depth

Concatenation and convolution layers appended

Results

Baseline policies were implemented to measure the novel policy against

- Reactive Grasping-only Policy Same problem structure, with a single FCNN
- Reactive Pushing and Grasping Policy Same as above, with an additional FCNN, selects action which provides the greatest immediate reward rather than actions that are better long-term
- All three policies were tested in simulated and real environments, with random and challenging arrangements of objects
- The novel policy out-performed the baselines in each scenario by 10-50%

Results

SIMULATION RESULTS ON CHALLENGING ARRANGEMENTS (MEAN %)

REAL-WORLD RESULTS ON CHALLENGING ARRANGEMENTS (MEAN %)

Conclusion

- Goal was to train FCNNs to predict reward policies that promote pushing and grasping to simplify a cluttered scene
- Networks receive RGBD heightmaps of a scene as input and output a heatmap of reward values after a push or grasp
- Rewards were tuned to promote synergy between pushing and grasping
- Novel policy outperformed baselines by a significant amount

Resources

- Paper: <https://arxiv.org/pdf/1803.09956.pdf>
- Writeup: <https://vpg.cs.princeton.edu/>
- Github: <https://github.com/andyzeng/visual-pushing-grasping>
- Markov Decision Processes:
	-

